

C. Wohlin, "Managing Software Quality through Incremental Development
and Certification", In Building Quality into Software, pp. 187-202, edited by

M. Ross, C. A. Brebbia, G. Staples and J. Stapleton, Computational
Mechanics Publications, Southampton, United Kingdom, 1994.

Managing Software Quality through Incremental Development
and Certification1

C. Wohlin
Department of Communication Systems, Lund Institute of
Technology, Lund University, Box 118, S-221 00 Lund, Sweden

ABSTRACT

A major problem in software development is the contradiction between on-
time delivery and reliability of the software. Improvements are needed to sup-
port on-time delivery without sacrificing the reliability requirement.

Incremental development and certification will allow for a better combina-
tion of on-time delivery and reliability fulfilment. A method proposing an opti-
mum order of development and certification of increments is presented. The
method is based on mapping the requirements into increments, where the map-
ping must be made so that an optimum order can be determined. The order of
increments will be based on risk and usage of the increments. It is shown that
the proposed method is superior to the waterfall approach and to a random
development and certification order of the increments. It is concluded that
incremental development and certification does help the software manager to
fulfil the on-time and reliability requirements at the same time.

INTRODUCTION

The basis for managing software quality is control throughout the develop-
ment. This can be achieved by incremental development, since the basic idea
with incremental development is to implement an executable part of the sys-
tem. The incremental approach allows for reliability certification of each incre-
ment and in particular the software system may grow and thus it is possible to
certify the cumulative growing system. This approach is advocated in Clean-
room Software Engineering (eg. Mills [1]).

1. This work is supported by National Board for Industrial and Technical Development, Swe-
den, reference Dnr: 93-2850.

The real benefit from the incremental approach can only be enjoyed if the
increments are developed in an appropriate order. The order must support man-
agers so that the software system meets the reliability requirements in as short
time as possible. It is possible to find such an order and the objective of the
paper is to present a method, which give the best order to fulfil both reliability
and time constraints. The method supports software managers in their task to
meet the quality objectives.

The key issues in the method are to identify suitable increments and to
determine a suitable order of the development of increments. The latter is
based on requirements regarding critical parts in the systems, overall software
reliability requirements and an objective to minimize the time for development
of the software product.

The paper contains some introductory sections, which introduces some dif-
ferent areas independently. First some principles in Cleanroom Software Engi-
neering are presented to introduce the context in which incremental
development is suggested. Cleanroom is, however, not a prerequisite to use
incremental development. The relationship between time constraints and relia-
bility of the software product is then discussed, after which some different
development approaches are discussed briefly. This discussion is followed by
an introduction to reliability certification.

The introductory sections are the basis for the sections in which the areas
are combined. The development approaches are elaborated one by one in the
light of reliability certification. The elaboration indicates the benefits with
increments in the development, hence a method for determining a suitable
order to develop the increments is proposed. The proposal is then compared in
terms of time to delivery, both with a traditional waterfall model as well as with
an incremental approach without the proposed scheme for determining the best
order to develop increments. Finally, some conclusions are presented.

PRINCIPLES IN CLEANROOM SOFTWARE ENGINEERING

Introduction
Cleanroom Software Engineering, (eg. Mills [1]), has shown that it is possible
to improve software quality and at the same time improve the productivity.

The Cleanroom methodology is based on the philosophy that it is possible
to develop zero defect software, though it may be hard to prove. The overall
principle in developing software systems using Cleanroom is to remove defects
in the same development phase as they are introduced, instead of waiting for an
executable code representation of the system to perform tests and defect
removal on. Cleanroom may be seen as consisting of a number of principles
which forms a basis for the overall philosophy.

The following principles are emphasized in Cleanroom:

1. Intellectual control of the software development.

2. Team responsibility of the work.

3. Process driven development.

4. Incremental development.

5. High level specification and design.

6. Stepwise refinement and rigorous verification.

7. Certification of software reliability.

These items are a collection of aspects stressed in the Cleanroom literature,
but they still allow for application of different techniques. If these views are
considered as Cleanroom, then several different techniques may be applied still
fulfilling the objectives of Cleanroom, but some more specific techniques can
also be found in the literature.

Box Structures (eg. Mills [2]) is proposed for specification and design of
the software, Stepwise Refinement and Functional Verification (eg. Linger [3])
are methods for implementing code in small steps and verifying them mathe-
matically, Statistical Usage Testing (eg. Cobb [4]) describes how the certifica-
tion is to be done in Cleanroom. It is proposed that the usage shall be modelled
with a plain Markov chain, (eg. Whittaker [5]), hence allowing for generation
of test cases according to the anticipated usage. The reliability model proposed
is presented in (eg. Currit [6]).

In particular, no specific method to support the principle of incremental
development is explicitly presented within Cleanroom. The objective of this
paper is to propose such a method to better enjoy the benefits of incremental
development, see item 4, and certification, see item 7.

TIME TO DELIVERY VERSUS RELIABILITY

The discussion is mainly concerned with two quality attributes: time to deliv-
ery and reliability. These two often seem to contradict each other. The procurer
of a software product may get the product on time, but the software has not
been thoroughly verified before the release due to delays. The delays often
means taking short-cuts in the verification and validation of the system before
releasing the software. In other words, poor software in terms of reliability is
delivered due to time constraints. The testing is not carried out as it ought to; it
may even happen that untested software hits the field.

The requirement on a specific release date often overrules other quality
objectives as for example reliability. This is of course unacceptable, but all too

common. Two major improvements are needed to come to term with the prob-
lem:

1. Management maturity
This is a non-technical issue, which refers to that management must be able
and prepared to give a realistic estimate of the time to delivery. This
includes taking other quality requirements into account, hence obtaining a
realistic combination of time to delivery and reliability. This improvement
is not discussed here, even though it is very important.

2. Process improvement
This item is used as a collective term for the technical improvements that
can be made, but in particular it refers to the improvements that can be
made in the actual development process. This process must of course be
supported by methods and tools. These issues are, however, not discussed
in this paper. The objective is, as stated earlier, to suggest a method to
improve the actual development process to enhance the reliability of the
software without prolonging the development phase. The key issue is to
use the available development time in an optimum way.

DEVELOPMENT APPROACHES

Waterfall model
The waterfall model for software development is well-known and does not
need an explanation, but to emphasis the important properties of the model
which influence the conclusions of the paper a brief presentation is included.
The waterfall model is described in more detail elsewhere (eg. Boehm [7]).

The model is based on a flow from idea (or requirement specification) to
maintenance of the software, through several development steps, for example
design, coding and testing. The actual steps in the waterfall model may be dif-
ferent depending on development environment and development process for-
mulation. The important issue in our context is that the model assumes that the
requirements are written for the whole system to be developed, then the system
is taken through the model step by step. The system is designed, coded and
tested in a series of activities. The system may be broken down into subsys-
tems and modules to enhance the development, but the system goes through
the model more or less synchronized.

The system is hence not tested as parts, but reaches the system test all at
once. This is at least the basis of the model, in practice there may be some devi-
ations, due to problems with some parts of the system or other organizational
dependent reasons.

The waterfall model does assume that the complete system is developed
after which it is tested. In particular, this implies that development and testing
are not parallel activities.

 Spiral model
The spiral model is an improvement and refinement of the waterfall model (eg.
Boehm [7]). The model is based on a risk driven approach and supports proto-
typing. The background of the model is the insight that it is not feasible to
develop software systems as proposed in the waterfall model. The development
must be an iterative procedure.

The model can be viewed as consisting of several waterfall models per-
formed after each other, where the output from one waterfall model is a proto-
type of the system (or part of the system) which can be shown to the procurer
of the system. The objective with this approach is to allow for a better commu-
nication between the developer and the procurer. The software is shown to the
procurer at different points during the development hence allowing for better
visibility of the product being developed.

The spiral model is a risk driven approach. It emphasizes to start with con-
centrating on high risk elements, for example the user interface may be judged
as constituting a large risk. If this is the case the development starts with con-
structing a prototype of the user interface, which then is shown to the procurer.
The evaluation of the prototype results in improved requirements, which work
as input to the next development cycle.

Incremental model
The objective with this model is to identify parts which can be developed from
specification to executable code. The development of an increment may follow
either a waterfall model or a spiral approach. Incremental development means
dividing the requirements into suitable parts during the specification allowing
for independent development of the different increments.

The design and coding of one increment are followed by testing of that
increment, which makes it possible for the developers to start implementing
the next increment while the testers validate, verify or certify the first devel-
oped increment. Here, it is assumed that development and testing are per-
formed by different teams, which also is one of the principles in Cleanroom.

The incremental approach hence allows for a good deal of parallelism
between development and testing. The benefit from this parallelism is not only
the possibility to work in parallel, but also that the testers really start testing the
software to be delivered at an early stage. This property will be essential in the
discussion below, since it supports early reliability control through certification
of increments.

Two major questions arise when discussing incremental development:

• How are increments identified from a requirement specification?

• In which order ought the increments to be developed?

The first question is very hard to answer from a general point of view. It is
important that the persons specifying the system have a good knowledge and
experience of the application domain. The formulation of suitable increments
is still a creative process. Some guidelines can be found when answering the
second question, which is further discussed below.

Summary development approaches
The spiral model may seem similar to incremental development, but there are
fundamental differences. Incremental development emphasizes identification
of system parts which may be implemented from specification to testing and
which are expected to be parts in the system to be delivered. In the spiral model
the objective is to develop prototypes which can be shown to the procurer to
form a basis for requirement refinement and as a means for better understand-
ing between developer and procurer.

Both these approaches have their benefits, but only the incremental
approach allows for development and certification in parallel of the system
parts which actually shall be delivered. The prototypes may be important, but
they do not support continuous statistical quality control of the software to be
delivered, and hence it is difficult to be in control of the software reliability at
the same time as fulfilling the requirements on delivery time.

Therefore, it is concluded that incremental development is superior to the
spiral model in terms of quality control. The spiral model will not be used any
further in the comparison since it requires too many assumptions concerning
what the prototypes actually are. This difficulty makes it extremely hard to
compare the spiral model with the incremental approach in a quantitative man-
ner, which is the objective below.

The waterfall model will however be compared with the incremental
approach concerning ability to deliver a software product with a specific relia-
bility requirement.

CERTIFICATION

Certification is the control of the quality fulfilment, for example to certify that
a specific reliability has been achieved. The basis for reliability certification is
usage testing. Reliability certification consists of two main constituents:

• Usage description, which includes both a usage model and a usage profile.
The model must describe the usage as it is expected in the operational
phase. This means describing a user of the system in terms of states of the
user and actions a user of the software can perform. The profile describes
the relative frequencies to perform certain actions, i.e. the actions are
assigned probabilities. The usage description is used to select test cases

which resemble the anticipated usage of the software when in operation.
Some different techniques to model usage are discussed in Whittaker [5],
Runeson [8] and Musa [9].

• Reliability estimation and prediction procedure, which includes different
techniques to perform estimation and prediction. Several different methods
and models are presented in the literature. The methods range from sam-
pling techniques (eg. Parnas [10]) to software reliability growth models
(eg. Currit [6]) via hypothesis testing methods (eg. Musa [11]). The choice
of the best method and model may differ between different development
environment.

The objective with this presentation is not to present reliability certification
techniques in any depth, but to show that the techniques are available and to
present the constituents briefly. Therefore it can be stated that it is possible to
estimate and predict the reliability or the mean time between failures (MTBF)
applying usage testing and reliability certification.

It will hereafter be assumed that it is possible to model the usage of a sys-
tem or an increment, generate test cases according to the expected usage, col-
lect failure data, estimate and predict the MTBF. This assumption is essential
in the presentation below.

CERTIFICATION WITH DIFFERENT DEVELOPMENT APPROACHES

In the waterfall model, certification can only be applied during system test.
This is the first time when it is possible to generate test cases and test the soft-
ware according to the anticipated usage. It is, however, not possible to generate
test cases according to the usage for units and separate functions.

The units are mostly not seen directly by the user hence it is difficult to cer-
tify them from a usage point of view. Certification of units or components are,
however, an important research area if reuse is to be a major breakthrough for
software systems (eg. Poore [12] and Wohlin [13]), but it will probably not be
an applicable method during unit testing in a particular project. It will rather be
a method to certify components which shall be stored in a repository for future
reuse.

Reliability certification can not be applied during functional testing, since
the objective of functional testing is mainly to assure that a particular function
is correctly implemented. Therefore not allowing for certification from a statis-
tical viewpoint.

The reasoning above for the waterfall model can be applied to the spiral
model as well, since the steps in the spiral model only produces prototypes
which shall not be delivered. They can hence not be tested according to a usage

profile, therefore the first time a reliability certification is feasible is during
system test in the spiral approach as well.

In the incremental model, the reliability certification can be applied on each
increment, since the definition of an increment is that it is an executable part of
the system. The first certification is performed on the first increment, while the
second certification is done on increment one and two together and so on. The
system grows increment by increment until the complete system finally can be
certified. A usage description must be formulated on an incremental level to
allow for the certification. The ability to certify the system incrementally is one
of the major advantages with incremental development.

AN OPTIMUM ORDER FOR INCREMENTS

The introduction of incremental development will probably cause some initial
problems, since it requires a cultural change in an organization. This may mean
that special considerations must be taken when choosing the order of incre-
ments in a first project. Some special considerations may be necessary in other
projects as well, but the objective here is to present the best order without con-
sidering the special cases which may be due to, for example political reasons,
staffing problems or available test equipment.

The method presented below gives an optimum order without taking any
special conditions into consideration. This is the only way to determine a suita-
ble order, it is then up to the user of the proposed method to adopt it and apply
it with any special needs taken into account.

The method means dividing the increments into three classes:

1. High risk increments
The increments which are considered as high risk increments must be
developed first, since the first developed increments will obtain most test-
ing in the incremental model. The high risk increments will also be the
increments on which the reliability requirements are the highest. Therefore,
it is necessary to start with the high risk increments.

2. High usage increments
The next class is the high usage increments. These are important since the
high usage means that the reliability of the increments must be high to fulfil
the overall reliability requirement.

3. Low usage increments
The low usage increments are not that important from a reliability point of
view since they are seldom used and their contribution to the overall sys-
tem reliability is quite small.

These classes also support the specifiers in their task. In their work they
must try to collect as homogeneous increments as possible, hence distributing
the requirements on suitable increments to obtain a structure which supports
the classes defined above. The definitions of these classes must act as guide-
lines for the specifiers when identifying increments.

TIME TO DELIVERY WITH THE DIFFERENT APPROACHES

Introduction
The actual time to delivery is a complex function, which here is regarded as
constituting of development time and certification time. The development time
is assumed to take a certain amount of time (in terms of calendar time), while
the certification time primarily is a function of the initial reliability of the soft-
ware as it is delivered to the certification team, the reliability growth during
certification and the reliability requirement.

Due to the number of different situations that can occur, for example vary-
ing the parameters described in the previous paragraph and the opportunity to
develop increments in parallel or not, it is not easy to find a general solution to
when the incremental model is superior to the waterfall model. Therefore a
intuitive explanation is first given. An example is then introduced to highlight
how the incremental model can be compared with the waterfall model and also
to show how the proposed order of increments improves the time to delivery.

Intuitive explanation: Waterfall model versus Incremental model
It is obvious that dividing the problem into parts which can be developed in
parallel is superior to serial development or developing the whole system as
one entity in terms of time to delivery. The latter is assumed to be the main
objective, hence the effort is not taken into consideration. The superiority of
the incremental model is true as long as the division does not mean that the
sum of the development times of the increments is much longer than the devel-
opment time for the waterfall model or that the division into increments intro-
duce much more faults than the waterfall approach. If the division into
increments does not affect neither the development time nor the fault content
then incremental development is superior due to the possibility of doing devel-
opment and certification in parallel.

The question is in what cases the above is not true. To highlight this an
example is introduced, but prior to the example a model describing how the
reliability grows as faults are found must be formulated.

A simple failure occurrence model
A very simple failure model is to assume a certain number of execution cases
(denoted N) of which a certain number will be executed with an erroneous
result (denoted f). The faults lurking in the software (execution cases) are expe-
rienced as failures as they are executed. This simple model is illustrated in fig-

ure 1.

Figure 1. A simple failure model.

A more advanced model, but similar model, has been used to simulate fail-
ure data to compare some different software reliability growth models (eg.
Jones [14]). The model can be used to generate times between failures by ran-
dom sampling with replacement or merely to calculate mean time between fail-
ures where either the failures can be corrected or not. The mean time between
failures (MTBF) becomes:

MTBF = N / f (1)

Equation 1 will be used to generate the time between failures to model the
reliability growth of the software as faults are corrected.

Example

Introduction The example contains two parts, first a comparison between the
waterfall model and the incremental model and then secondly an evaluation of
the proposed order of increments compared to an arbitrary order. Before doing
the comparisons, some assumptions and some definitions are needed.

The following general assumptions are made:

• The system can be divided into a number of equally large increments. This
implies that the development of the increments take the same amount of
time and also that each increment contains the same number of execution
cases and therefore also the same number of faulty execution cases.

• The incremental development is assumed to be made in series, i.e. only one
increment is developed at the time. The certification of an increment is,
however, made in parallel with the development of a new increment. This
assumptions is negative for the incremental model, since one of the major
advantages with the incremental model is the possibility to develop incre-
ments in parallel.

• The times to perform the execution cases are assumed to be the same and it
is also assumed that an execution case takes one time unit to execute. This
time unit is not necessarily only the actual processor time, but some time to
perform the case in general including user actions. This time unit is the
same as the time referred to below when discussing the development and
certification times respectively.

… …
No faults Faults (f)

N = No faults + Faults (f)

• Increments under certification, while others are developed, are tested as
long as the development proceeds. The last certification is made until the
reliability requirement for the system is fulfilled. The latter is also valid for
the waterfall model when certifying the complete system prior to delivery.

• The example will not include any high risk increments, since it is difficult
to compare a waterfall approach where the critical part is included as part
of the system and hence not particular visible, with an incremental
approach where the visibility of the critical parts is obvious through the
division.

The definitions of execution cases (N), faulty execution cases (f) and
MTBF are needed to model the reliability growth and the initial reliability as
the software is brought to the certification team. This is, however, not enough,
the following is needed as well:

• Development time for the waterfall model – X,

• The number of increments – n,

• Development time for an increment – X * c / n, where c is a scaling factor
due to the division into increments. The factor can either be larger than one
due to that the division into increments take some time or less than one due
to that the development of an increment may go faster since it is a smaller
piece of software.

• Reliability requirement in terms of MTBF – MTBF(req.),

• The number of faults in an increment – f * b, where b is a scaling factor
describing that the division into increments may have changed the number
of faults introduced in the software. b can either be larger than one or less
than one with similar arguments as for the development time and the scal-
ing factor c.

• Usage probability for increment i – p(i).

The scaling factors c and b can be determined, under the given assumptions
and by letting one of the factors be constant while varying the other, so that the
time to delivery with the waterfall model and the incremental model becomes
the same (see below).

Waterfall model versus Incremental model The parameters are assigned fig-
ures, which simplifies the discussion considerably. The following figures will
be used:

X = 1500, N = 1000, f = 20, MTBF(req.) = 200, n = 4, c = 1.2, b = 1.2 and p(1)
= p(2) = p(3) = p(4) = 0.25.

The example is illustrated in figure 2.

Figure 2. An illustration of the example.

Figure 2 only gives a schematic view of the problem hence the length of the
different approaches shall not be judged from the figure, instead this is one of
the important questions to answer in the comparison. The following questions
are posed:

1. What is the time to delivery (TTD) for the waterfall model?
TTD = 1500 + 1000/20 + 1000/19 + … + 1000/5 = 3014
The last MTBF is equal to the requirement, i.e. MTBF(req.) = 200.

2. What is the time to delivery for the incremental model?
The TTD consists of the development times for the four increments and the
residual certification time to fulfil the reliability requirement. The certifica-
tion time added depends on the certifications made in parallel with the
development of increments 2, 3 and 4.
MTBF values for the certification of increments during development of
new increments are presented in table 1.

The figures in table 1 show that 5 faults are left in increments 1, 2 and 3
and increment 4 contains 6 faults, hence the certification means removing 7
faults to achieve the reliability requirement.
TTD = 4 * (1500 *1.2 / 4) + 1000/11 + 1000/10 + … 1000/5 = 2737
(<3014).

TABLE 1. MTBF values during incremental certification

Inc. 1 Inc. 1+2 Inc. 1+2+3
MTBF(1) 42 71 83
MTBF(2) 50 83 94
MTBF(3) 62 100 107
MTBF(4) 83 125 125
MTBF(5) 125 - -
Sum MTBF 362 380 409
Dev. time next inc. 450 450 450
MTBF after cert. 250 167 150

Waterfall: Development: X
Certification

Delivery time

Incremental:
Dev. Inc. 1Dev. Inc. 2 Dev. Inc. 3Dev. Inc. 4

C. Inc. 1 C. Inc. 1-2 C. Inc. 1-3 C. Inc. 1-4

3. If b is 1.2, what value of c gives an equal time to delivery for the waterfall
and the incremental model?
The time to delivery (TTD) becomes as follows for some different values
on c: c = 1.3 => TTD = 2887; c = 1.4 => TTD = 3037 and c = 1.5 => TTD
= 3096.
The breakpoint for c in this particular case is close to c = 1.4, (cf. 3014).

4. If c is 1.2, what value of b gives an equal time to delivery for the waterfall
and the incremental model?
The time to delivery (TTD) becomes as follows for some different values
on b (or number of faults per increment): b = 1.4 (7 faults) => TTD = 2820;
b = 1.6 (8 faults) => TTD = 3035 and b = 1.8 (9 faults) => TTD = 3097.
The breakpoint for b in this particular case is close to b = 1.6, (cf. 3014).

The results in item 3 and 4 are non-linear and may vary unexpectedly, due
to that the failure free execution at the end of the certification is not used. The
time to delivery is more sensitive to a prolonged development time than a
poorer reliability in the increments, which is shown by the values c and b in
item 3 and 4.

It is clear from the example that the incremental model gives the same reli-
ability in a shorter time period. Therefore the incremental model ought to be
used to manage the quality of software. The model provides a better trade-off
between reliability and time to delivery than the waterfall model. The incre-
mental model would be even more superior if the increments were developed
more or less in parallel and not in series as depicted here.

Incremental model: Arbitrary order versus optimum order In the previous part
of the example, it was assumed that each increment was used with the same
probability, i.e. equal values on all p(i). In such a case, the order of increments
is irrelevant, but this equal distribution is not the normal case because for most
applications there are some services or functions that are used more frequently
than others. Therefore this case will be considered here, when illustrating the
advantage with the proposed development order of increments. High risk incre-
ments are not considered as pointed out above.

Let p(1) = 0.50, p(2) = 0.30, p(3) = 0.15, p(4) = 0.05 and it is also assumed
that the reliability requirement has been raised, due to a more demanding pro-
curer, to 400.

The MTBF after certification for the entity under certification is known,
but in reality not for the separate increments and in particular the MTBF at the
start of certification is unknown. The latter is, however, not the case here where
the objective is to illustrate the advantages and not to do an analysis of real
data. After removing the last fault in an increment or in the system, it is
assumed that the MTBF can be set to be 500 time units, which is twice the

value of the last MTBF for a particular increment and also higher than the
requirement.

Arbitrary order of the increments, for example 3, 1, 4 and 2, is considered
first. From the previous part of the example, it is known that the MTBF of the
first certified increment becomes 250 (see table 1). The MTBF of the next
increment when it is brought to certification is 42 (1000 / (4 * 6)) (here incre-
ment 1). This means that the initial MTBF for increment 1 + 3 becomes: 42 *
0.50 / 0.65 + 250 * 0.15 / 0.65 = 90, with 1 fault remaining in increment 3 and
6 faults in increment 1. The calculation of the MTBFs becomes a little more
complicated since the testing is made according to the usage probabilities, i.e.
in this case 0.15/0.65 and 0.50/0.65 which are the relative probabilities for
these two increments. The MTBF values are shown in table 2.

After certification of increments 1+3, 2 faults remain in increment 1 and 1
fault in increment 3, while after certification of increments 3+1+4, 1 fault
remains in increment 3 and all 6 faults remain in increment 4. Therefore the
number of faults brought to the certification of the complete system is 13 (1+6
+6), where 7 of them are removed, see table 3. This leaves 1 fault in increment
3 and 5 faults in increment 4. The certification was performed until the reliabil-
ity requirement was fulfilled. The MTBF values together with the total certifi-
cation time for the certification of the complete system is shown in table 3.

The same procedure is made for the optimum order, i.e. in this case the
increments are taken in usage order. The total certification time and the MTBF
values are also shown in table 3. The certification time becomes shorter with
the proposed order of the increments. This certification leaves 2 faults in incre-

TABLE 2. MTBF values for an arbitrary order of certification

Inc. 3 Inc. 3+1 Inc. 3+1+4
MTBF(1) 42 90 146
MTBF(2) 50 96 208
MTBF(3) 62 106 -
MTBF(4) 83 122 -
MTBF(5) 125 - -
Sum MTBF 362 414 381
Dev. time next inc. 450 450 450
MTBF after cert. 250 154 208

TABLE 3. MTBF values for the final certification period

MTBF 1 2 3 4 5 6 7 8 Sum
Arbitrary order 302 305 308 314 327 365 440 - 2361
Optimum order 171 172 174 205 215 340 346 421 2044

ment 3 and 6 faults in increment 4, while increment 1 and 2 are free from
faults. One more fault is left in the software, but on the other hand the require-
ment is fulfilled which must be the main objective, i.e. the ‘right’ faults must
be removed in as short time as possible.

Conclusions example Based on this example, it can be concluded that the
incremental approach is better than the waterfall model and the proposed order
of increments is superior to an arbitrary order, when it comes to an optimum
relationship between reliability and delivery time.

CONCLUSIONS

Two important principles proposed in Cleanroom, incremental development
and certification, have been discussed. The benefits with both incremental
development and certification have been emphasized and in particular the
advantages with combining incremental development with certification tech-
niques have been presented. Incremental development and certification are
methods which support managers in their work to stay in quality control in
terms of reliability and software release time.

In realistic cases incremental development is superior to the waterfall
approach and also to the spiral model since the latter does not allow for a step
by step certification procedure. The superiority is due to the degrees of free-
dom with the incremental model and in particular the opportunity to perform
work on parts to be delivered in parallel. This conclusions does, however,
require that the two scaling factors introduced do not grow too large.

The proposed order of increments is superior to an arbitrary order of incre-
ments, hence providing a higher reliability in a shorter time period. The possi-
bility to develop as high reliability software in as short time period as possible
is a major challenge and thus incremental development ought to be applied.
Some studies indicate that high reliability is highly correlated with high main-
tainability (eg. Stålhane [15]), which means that the result presented becomes
even more important.

Managing software quality means adopting incremental development and
certification, which provide higher reliability (and maintainability) in a shorter
time period, hence allowing for on-time delivery with reliability control and
fulfilment of the quality requirements.

REFERENCES

1. Mills, H. D., Dyer, M. and Linger, R. C. ‘Cleanroom Software Engineer-
ing’ IEEE Software, pp. 19-24, September 1987.

2. Mills, H. D., Linger, R. C. and Hevner, A. R. Principles of Information Sys-
tems Analysis and Design Academic Press Inc. 1986.

3. Linger, R. C., Mills, H. D. and Witt, B. I. Structured Programming Theory
and Practice Addison-Wesley Publishing Company, 1979.

4. Cobb, R. H., and Mills, H. D. ‘Engineering Software Under Statistical
Quality Control’ IEEE Software, pp. 44-54, November 1990.

5. Whittaker, J. A. and Poore, J. H. ‘Statistical Testing for Cleanroom Soft-
ware Engineering’ Proceedings 25th Annual Hawaii Int. Conf. on System
Sciences, pp. 428-436, Hawaii, USA, 1992.

6. Currit, P. A., Dyer, M., and Mills, H. D. ‘Certifying the Reliability of Soft-
ware’ IEEE Transactions on Software Engineering, Vol. SE-12, No. 1, pp.
3-11, January 1986.

7. Boehm, B. ‘A Spiral Model of Software Development and Enhancement’,
IEEE Computer, pp. 61-72, May 1988.

8. Runeson, P. and Wohlin, C. ‘Usage Modelling: The Basis for Statistical
Quality Control’, Proceedings 10th Annual Software Reliability Sympo-
sium, pp. 77-84, Denver, Colorado, USA, 1992.

9. Musa, J. D. ‘Operational Profiles in Software Reliability Engineering’
IEEE Software, pp. 14-32, March 1993.

10. Parnas, D.L., van Schouwen, A. J. and Kwan, S. P. ‘Evaluation of Safety-
Critical Software’ Communications of the ACM, Vol. 33, No. 6, pp. 636-
648, June 1990.

11. Musa, J. D., Iannino, A. and Okumoto, K. ‘Software Reliability: Measure-
ment, Prediction, Application’ McGraw-Hill, New York, 1987.

12. Poore J. H., Mills H. D. and Mutchler, D. ‘Planning and Certifying Soft-
ware System Reliability’ IEEE Software, pp. 88-99, January 1993.

13. Wohlin, C. and Runeson, P. ‘Certification of Software Components’, Sub-
mitted to IEEE Transaction on Software Engineering, 1993.

14. Jones, W. and Gregory, D. ‘Infinite Failure Models for a finite World: A
Simulation Study for the Fault Discovery Process’, Proceedings Int. Sym-
posium on Software Reliability Engineering, pp. 284-293, Denver, Colo-
rado, USA, 1993.

15. Stålhane, T. and Wedde, K. J. ‘The Quest for Reliability – A Case Study’,
Proceedings 2nd Int. Conf. on Achieving Quality in Software, pp. 309-320,
Venice, Italy, 1993.

Biography: Claes Wohlin

Claes Wohlin received a Ph.D. from the Department of Communication Sys-
tems at Lund University, Lund, Sweden. He has five years of industrial experi-
ence from software projects. Currently he is associate professor at the
department of Communication Systems, where he is responsible for education
and research in the area of software engineering in telecommunications.

Title and Synopsis

Managing Software Quality through Incremental Development and Certi-
fication

A method for an optimum combination between on-time delivery and software
reliability through incremental development and certification is presented.

