

C. Wohlin, "Performance and Functional Prototyping from Software Descriptions",
Proceedings 8th International Conference on Software Engineering for

Telecommunication Services and Systems, pp. 102-106, Florence, Italy, 1992.

1

PERFORMANCE AND FUNCTIONAL PROTOTYPING FROM SOFTWARE DESCRIPTIONS

Claes Wohlin

E-P Telecom Q-Labs, Lund, Sweden

INTRODUCTION

The use of formal description techniques, in
particular standardised, are a prerequisite
for transformation of the descriptions into
other representations. These can be either a
step in the development process or a way to
analyse or dimensioning the qualities of the
system at an early stage.

The objective with this work is to formulate
a general (independent of description
technique) methodology for performance
analysis at an early stage. It shall,
however, be noted that as a side effect it is

possible to do functional analysis in a real
time model as well. A thorough presentation
of the methodology is given in Wohlin (1),
while a general introduction in terms of
modelling concepts is presented in Wohlin and
Rapp (2) and the implementation of an example
is discussed in more detail in Wohlin (3).
The main concern in this paper will be to
present some results in transforming SDL
system specifications into SDL descriptions
describing the original SDL system from a
performance viewpoint. SDL (Specification and
Description Language) has been standardised
by CCITT (4) as a suitable description
technique for telecommunication systems. An
introduction to SDL can be found in for
example Belina et al (5). It shall, however,
be observed that the methodology is not
dependent on SDL. The methodology in itself
is independent of description technique, and
SDL has only been chosen as a suitable
example based on experience and available
tools.

2

This type of methodology for prototyping of
software systems is new, i.e. no similar
method has been found for any description
technique and in particular not for SDL. A
lot of work is going on concerning
prototyping in general and some of it is

related to SDL. The combination of software
metrics and SDL for performance prototyping
simulations seems, however, to be unique. The
main research concerning the methodology has
been performed at the Department of
Communication Systems at Lund Institute of
Technology, Sweden and it is presented in
(1). As part of a project within the Swedish
Research Programme in Information Technology
(No. 4) the methodology has been refined and
adapted to SDL and a tool prototype
supporting the methodology has been
developed. The prototype is based on the
existing tool environment SDT (SDL Design
Tool). SDT is described in Belina and Nilsson
(6) and TeleLogic (7), and the simulator is
described in more detail in Karlsson and Ek
(8). The project is also partly supported by
the Swedish Telecom.

This is the basis for the Performance
Prototyping Simulator, whose objective is to
provide a possibility to execute the system

descriptions written in SDL from a
performance point of view (as well as a real
time functional perspective) at an early
stage during the development. The methodology
can be used both to verify qualities of
software and systems at an early stage as
well as for capacity dimensioning of
telecommunication systems and services.

METHODOLOGY OVERVIEW

The methodology for performance analysis at
an early stage of the development of software
systems is based on that an analysis object
and its environment are identified, see
figure 1. The analysis object can be anything
between a software process and a complete
system.

3

The basis for the methodology is that it is
possible to divide the problem domain into
three initially independent parts, i.e.
application software, architecture (e.g.
processors, busses, operating system) and the
surrounding of the analysis object, hereafter

denoted environment. These three aspects are
modelled in one model each, i.e. application
software - Use Process Model (UPM),
architecture - Queue Architecture Model (QAM)
and environment - Environment Demand Model
(EDM). The former, i.e. UPM, is to be
generated automatically from the application
software descriptions (in our particular case
SDL), while the QAM and the EDM are described
with simulation models formulated in SDL.
This type of simulation models have been used
succesfully during several years for
performance analysis. In the future it ought
to be possible to generate skeletons of the
QAM and the EDM respectively.

The three models are then put together to
form a simulation model of the system, i.e.
the Performance Prototyping Simulator. The
advantage with this concept compared to
traditional performance simulations is that
the actual behaviour of the software is
incorporated in the analysis at an early

stage, which seems utterly important since a
lot of the dynamic behaviour of the system is
described by the software. This means that
poor solutions can be detected and that
different solutions can be evaluated from a
performance viewpoint as well as functional
before final implementation. The methodology
makes it possible to do separate analysis of
the software, as well as doing a system
analysis, see analysis object above.

The introduction of this new concept for
early system verification both from a
functional viewpoint, but in particular from
a performance perspective which is the main
concern in this paper, requires additions to
existing tool environments or a new view when
developing tools. An overview of the steps
and the actions when implementing this new
approach to system verification is presented
in figure 2.

4

It shall be noted that the numbers in the
figure refers to different steps to go
through. The steps, however, are not
completely related to the order, i.e. number
1 describes the way things are done today
while number 2 through 6 describes the new

approach. In the latter case the numbers are
in time order. The important thing to
remember is that there is no horizontal time
axis, i.e. the new approach 2-6 can be
performed long before the current way is
possible to go.

The numbers in the figure will be gone
through in some more detail below. The
meaning of the numbers can be summarised by;

1. Ordinary (traditional) way. This is the
"normal" way in system development and
it will not be discussed any further.

2. Applying transformation rules, section
3.

3. Generation of Use Process Model (UPM)
from SDL, section 4.

4. Generation of skeletons for the Queue
Architecture Model (QAM) and the
Environment Demand Model (EDM), section
5.

5. Completion of the simulation model, UPM

(optional) respectively QAM and EDM
(mandatory), section 6.

6. Performance (and functional) simulations
based on the new concept, section 7.

These steps will hopefully show the
opportunities and the advantages with the
proposed methodology for early verification
of performance and functionality.

5

TRANSFORMATION RULES

One of the main objectives is to use the
system description, in for example SDL, to do
performance analysis. It is also the

objective that the system description has not
to be completely specified, for example tasks
and decision boxes may contain informal text.
The main structure of the system has to be
specified and the communication between
different entities, for example processes in
SDL. It is also possible to formulate a model
based on for example message sequence charts
(MSC). Independent of the chosen level to
apply this concept on it will require a
transformation of the original description
and metrics on for example execution times
for different symbols or parts, probabilities
for different paths if informal text is used
in a decision box and on input intensities
for different signals (i.e. the use of
different services). The transformations can
be divided into two separate areas;
description technique and handling of the
hierarchical structure (software executing on
architecture). Unfortunately, it is
impossible to describe the actual
transformations in any detail in a paper like
this. The presentation below is only meant to

give a flavour of the type of transformations
that is needed. The transformation rules are
presented in detail in (1).

SDL descriptions

The actual transformation of the original SDL
system consists of several activities. It is
determined which parts of the SDL system that
shall be transformed. The execution times for
different symbols are modelled as delays. The
decision boxes containing informal text are
transformed by using random numbers, i.e. the
user can decide the probability for different
paths and for each execution a random path is
chosen according to the probabilities given
by the user. Both the execution times and the
probabilities have to be known or estimated
from the system being developed or
experiences from earlier projects. As an
example of a transformation we will consider
the transformation of a task in an SDL
process, see figure 3.

6

The task will remain after the transformation
if it contains a functional behaviour, i.e.
does not contain informal text. Independent
of the content of the task a procedure call
is added before the execution of the task.
This procedure is denoted the delay procedure

and one parameter is passed to the procedure,
i.e. the delay for the task. The length of
the delay has to be determined by the user of
the methodology, as a first approach every
symbol of the same type is assigned the same
delay. The procedure is also shown in figure
3. The procedure delays the execution for the
specified delay by use of the timer concept
in SDL. It shall be noted that all signals
are saved within the procedure, and the
reason is of course that the transformation
may not alter the original functional
behaviour.

Hierarchical processes (software -
architecture - environment)

The concept of hierarchical processes is
introduced to cope with that the transformed
software descriptions shall execute on a
simulation model of the architecture. The
latter is also described with SDL processes,
though it is a simulation model instead of a

system description.

The original SDL system is transformed into a
partial simulation model (UPM), in which the
modelling concepts from the methodology can
be found. A new system and new blocks are
generated. The new entities are connected
together with channels. The signals from the
original SDL system are transformed into a
form which supports the handling of
hierarchical processes, i.e. almost all
signals are sent via the architecture instead
of directly between the software processes as
specified in the SDL system.

7

At each start of a new transition an
execution request procedure is called. The
procedure sends an execution request to the
architecture process modelling the processor
that the actual SDL process shall execute on.
The connection between the architecture and

the SDL processes is described with a general
data structure which content has to be
specified by the user at the start of the
simulation. This is further discussed in (1).
At the end of each transition a release
signal is sent to the architecture process.

GENERATION OF UPM

The transformation rules are being
implemented in a tool prototype within an
existing tool environment, i.e. SDT. The work
constitutes of writing a translator from
original SDL descriptions to new SDL
descriptions, which captures the original
behaviour as well as the performance aspect.
The rules are implemented through additions,
changes and deletions in the abstract syntax
tree from the original description or through
adding comments to the symbols in abstract
syntax tree or trough adding SDL/PR at the
end of the generated file. These three
approaches will be described briefly.

The abstract syntax tree

This is perhaps the most natural way of
changing the original description. It is
consequently the most common used approach.
In a typical case a search routine is used to
find the first occurrence of a particular
concept, another routine is used to add for
example the procedure calls discussed above,
after the addition to the tree the next
occurrence of the symbol is located until all
occurrences have been found.

8

Comments to the abstract syntax tree

The transformation of SDL into new SDL makes
it possible to use the existing environment
in a way that is impossible when translating

to, for example, C or Ada. It is possible to
benefit from the fact that the generated
description can be put into the same
environment as the original description, i.e.
an existing analyser or code generator can be
used on the second "lap", see figure 2,
number 6. In our particular case this means
that we can benefit from that the generated
SDL is analysed when doing the second lap,
i.e. we can add "comments" (in SDL/PR
notation) to a node (without the comment
notation in SDL) in the abstract syntax tree
and then unparse the tree. This gives us a
file with SDL/PR and when putting this into
the analyser the text added as "comments" in
the tree is interpreted as SDL/PR code, which
means that we can add code in a much simpler
way than creating the corresponding nodes in
the abstract syntax tree. This approach is
particular useful when adding several lines
of code after a specific symbol in the
abstract syntax tree.

Adding SDL/PR

A third possible way to do transformations is
to add SDL/PR code directly to the unparsed
file, i.e. the file that is generated from
the complemented abstract syntax tree. This
approach is particularly useful when code
shall be added at the end of the file, for
example the two procedures discussed above
can be added in this way. The generation of
skeletons for the Queue Architecture Model
and the Environment Demand Model, which will
be discussed next, will also be quite simple
by using this method.

GENERATION OF SKELETONS FOR QAM AND EDM

First, it shall be observed, as pointed out
above as well, that the Queue Architecture
Model and the Environment Demand Model are
described with SDL. These are, however,
simulation models in another sense than the
Use Process Model.

9

Currently no skeletons are generated for the
QAM and the EDM. It will, however, be
possible to generate parts of these models,
in particular those parts of the models that
models the interfaces between the different
modelling concepts. For example, the data

structure describing how the software
processes are distributed in the
architecture, as well as the coupling between
the environment and the system (architecture
and software).

COMPLETION OF THE SIMULATION MODEL

The completion of the generated model covers
two main aspects, i.e. additions or changes
to the generated Use Process Model and
completion of the simulation models of the
architecture and the environment
respectively.

Changing the UPM

It shall not be necessary to change the
generated UPM, but the user shall be able to
do so if desired. It may happen that it is
necessary to change the generated UPM due to
the measurements. As an example it can be

mentioned that in the example below one of
the objectives was to measure the load of the
different process types on the processors.
This meant that it was necessary to introduce
a new variable to keep track of the type of
the different process instances that executed
on the processor to be able to sum up the
total execution time of a specific process
type. Several other situations can probably
occur, but the important thing is that the
user is allowed to alter the generated UPM.
The user is, however, not advised to change
in the UPM if it is a change in the system
description, on the contrary the user shall
alter in the specification and the re-
generate the UPM

10

Adding information to the simulation model of
the QAM and the EDM

Today this "addition" means formulating all
of the simulation models, but in the future

it ought to be possible to generate the
skeletons as discussed above. The formulation
of the QAM and the EDM means consequently
that the models have to be formulated from
scratch. The user is supposed to describe the
architecture and the behaviour of the
environment with SDL. It is not possible to
model all details in the architecture and the
environment, but the important thing is to
capture the main behaviour or the soul
principles.

PERFORMANCE PROTOTYPING SIMULATION

The performance prototyping simulation is
then performed through using the existing
tool environment on the generated code, see
figure 2. The usefulness of the methodology
is best seen through an example. The example
has been presented in more detail in (1) as
well as in (3). In this paper we will only
try to point out the main results from the
execution of the obtained simulation model.

The perhaps most important conclusion from
the example is not the actual results, but
the fact that it is possible to generate,
complement and execute a simulation model
based on this concept.

The execution of the simulation model gives
two interesting results; 1) functional
simulation results from a real time model and
2) performance analysis results.

Functional result. A race between two signals
is discovered, i.e. the behaviour of the
system becomes different depending on the
order of two signals. Due to the delay in the
architecture it may happen that a terminate
signal has not reached the receiving instance
before it sends a signal to the process that
has terminated. This leads to a dynamic error
in the simulation. The original SDL system
has been specified so that under some
circumstances this will occur. Specifically
the problem arises for high loads. A re-
design is therefore necessary to cope with

11

this problem, which would have been difficult
to find without simulation.

Performance results. The results from the
performance part of the simulation depend on
what is specified by the user. The

measurements are specified by the user of the
system when complementing the generated
simulation model by the Queue Architecture
Model, the Environment Demand Model and some
general processes that governs the
simulation. The latter has not been discussed
earlier, but it is necessary to have some
general processes for starting the simulation
and perhaps for making measurement. These
type of processes are quite simple to
formulate and they will not be any problem
for the user.

All in all it has been shown that it is
possible to obtain interesting simulation
results from applying the proposed simulation
concept. We are able to obtain information
about the performance and the functional
behaviour of the SDL specification before
implementing a faulty or poor solution.

These early warnings and possibilities of
changing instead of being surprised when the

project fails during the test phase will soon
become a necessity. The formal description
techniques form the basis for methods for
early verification as the one presented. It
can from the example be concluded that the
proposed methodology can be implemented in an
existing tool set for SDL. The presentation
has shown that rules can be formulated for
transforming and generating the Use Process
Model processes from the original SDL
descriptions. It has also been shown that the
generated processes can be complemented with
descriptions of the architecture and the
environment, and it has in particular been
shown that the modelling concepts can be
connected together. The three proposed
modelling concepts (UPM, QAM and EDM) are
valuable, since they let the user concentrate
on one aspect at the time and then at the end
connect them together. The methodology will
therefore be a valuable contribution to the
possibilities of doing early performance
analysis and functional verification of

software systems, independent of the chosen

12

description technique, i.e. SDL has only been
used as an example.

13

CONCLUDING REMARKS

Formal and standardised description
techniques, as SDL, provide an excellent
opportunity for automatic transformations to

other representations. The other
representation can either be a step in the
development life cycle or a special
representation for evaluating one or several
qualities of the system. The qualities of the
systems of today is becoming a critical issue
as the systems are getting larger and more
complex. This means that techniques and
methods for analysis of system qualities are
needed to stay in control of the software
system being developed.

This paper has considered how the SDL system
specifications can be used for evaluating the
performance of the system at an early stage.
It has been discussed which parameters that
have to be extracted from the descriptions
and how the system specifications can be
transformed into a model describing the
system from a performance perspective. The
method of automatic transformation of SDL
into performance models for simulation is
being implemented into a tool prototype.

The methodology provides a basis for;

• identifying software bottlenecks at an
early stage

• evaluating different distributions of
software processes in an architecture

• studying the introduction of new
services in an existing system (network)

• examining different architectures
ability to execute a given software
description

• identifying system bottlenecks

14

These issues will become important aspects as
the demands on new services and systems grow
in the same time as the requirements on short
lead times and higher productivity continue
to grow. Part of the solution to these
problems is most certainly to put more

emphasis on the early phases of the system
life cycle through introduction of formal
techniques and methods that support different
aspects of the development process. It is
believed that methods for automatic
translations of formal specifications into
other representations will be one of the key
issues to cope with the productivity and
quality problems of software systems. The
presented methodology provides an opportunity
to tackle the problem of early verification
of both performance and functionality, as
well as for doing capacity dimensioning of a
network.

ACKNOWLEDGEMENT

The presented work is part of a project on
methods for simulation and prototyping
techniques. The project is partly being
funded by the Swedish Research Programme in
Information Technology (number 4) and partly
by the Swedish Telecom.

I would like to thank the following persons
for valuable comments and discussions, as
well as some practical help from time to
time; thanks to professor Ulf Körner,
Department of Communication Systems, Lund
Institute of Technology, Sweden and David
Rapp, Mats Löfgren, Anders Larsson and Eva
Hedman at Telia Research, as well as Jan
Karlsson at TeleLogic.

REFERENCES

1. Wohlin, C., 1991, "Software reliability
and performance modelling for
telecommunication systems", Dept. of
Communication Systems, Lund Institute of
Technology, Lund, Sweden, PhD thesis.

2. Wohlin, C., and Rapp, D., 1989,
"Performance analysis in the early
design of software", Proceedings 7th
Int. Conf. on Software Engineering for

Telecommunication Switching Systems, pp
114-121, Bournemouth, England.

15

3. Wohlin, C., 1991, "Performance analysis
of SDL systems from SDL descriptions",
In Ove Færgemand and Rick Reed, editors,
SDL ´91: Evolving Methods, pp 353-364,
Elsevier Science Publisher B.V., North
Holland, Amsterdam, The Netherlands.

4. CCITT Recommendation Z.100, 1988,
"Specification and Description Language
SDL", Blue book, Volume X.1-X.5, 1988.

5. Belina, F., Hogrefe, D., and Sarma, A.,
1991, "SDL with applications from
protocol specification", Prentice Hall,
United Kingdom.

6. Belina, F., and Nilsson, G., 1987, "SDT
- SDL design tool", Proceedings 3rd SDL
Forum, pp 8.1-8.9, Hague, The
Netherlands.

7. TeleLogic, SDT2 - user manual, TeleLogic
AB, Malmö, Sweden, 1991.

8. Karlsson, J., and Ek, A., 'SSI - an SDL
simulation tool', In Ove Færgemand and
Maria Manuela Marques, editors, SDL'89:
The language at work, pp 211-218,
Elsevier Science Publisher B.V., North
Holland, 1989.

