

N. Ohlsson and C. Wohlin, "Identification of Failure-Prone Modules in Two Software
System Releases", Proceedings Twenty-First Annual Software Engineering Workshop,

Greenbelt, Maryland, USA, 1996.

1

Identification of Failure–Prone Modules
in

Two Software System Releases

 Niclas Ohlsson and Claes Wohlin
Dept. of Computer and Information Science

Linköping University, S-581 83 Linköping, Sweden
E–mail: (nicoh, clawo)@ida.liu.se

1 Introduction
This paper presents a case study of fault and failure data from two consecutive releases of a large
telecommunication system. In this context it is important to have clear interpretations of errors,
faults and failures. Thus, we would like to make the following distinction between them. Errors
are made by humans, which may result in faults in the software. The faults may manifest them-
selves as failures during operation. Thus, faults can be interpreted as defects in the software and
failures are the actual malfunction in an operational environment. In this paper we have used
fault–prone modules to denote the modules that account for the highest number of faults disclosed
during testing, while failure–prone modules is used to denote the modules accounting for the
highest number of faults disclosed during the first office application and in operation. The general
objective of the study is to investigate methods of identifying failure–prone software modules.
Furthermore, the goal is to use the knowledge acquired to improve the software development
process in order to improve software quality in the future.

Some early results using parametric statistics have been reported in (Ohlsson and Alberg, 1996).
The models have since been refined and analysed with non–parametric statistics (Ohlsson
et al., 1996). Identification of fault–prone modules has also been addressed by other researchers
(Khoshgoftaar and Kalaichelvan, 1995) and (Munson and Khoshgoftaar, 1992). Few, if any, stud-
ies have exploited the opportunities to identify not only fault–prone modules, but also failure–
prone modules which are the main concern of the user. There is also a general lack of studies
investigating whether identification of fault–prone modules means that we actually also identify
failure–prone modules.

Another important issue is to establish when in the development phase we are able to identify
modules which will be failure–prone in the operational phase. This paper investigates three differ-
ent times for prediction: history (previous release), the design phase and the test phase. One
important consideration is to address whether or not fault–prone modules during testing are fail-
ure–prone during operation. If fault–prone does not imply failure–prone, then we may have to
improve the test methods.

The paper is organized as follows. In Section 2, an overview of the study is presented. Section 3
discusses identification of failure–prone modules based on experience from a previous release,
and Section 4 presents results using prediction models based on design measures. In Section 5,
results concerning identification of failure–prone modules based on test data are presented.
Finally, some conclusions are given in Section 6.

2

2 Overview of study
This paper is part of a long–term empirical study conducted at Ericsson Telecom AB with the
objective of studying how identification of fault and failure–prone modules can be used to
achieve cost–effective quality improvement. In release n of the system 130 modules have been
analysed and in release n+1 232 modules have been investigated. Fault and failure data have been
collected from functional testing, system testing, first office application (i.e. the first 26 weeks
and a number of site tests) and operation. It was possible to trace 69 modules developed for
release n that were modified in release n+1. Release n+1 is a major system revision. Data is cur-
rently being collected for release n+2. The modules are of the size of 1000 to 6000 lines of code
each.

Promising results concerning identification of fault–prone modules have been presented else-
where, i.e. design measures were used to identify fault–prone modules (Ohlsson et al., 1996) and
(Ohlsson and Alberg, 1996). The objective here is to study the identification of failure–prone
modules based on fault and failure data as well as from design measures. In this paper we have
used one failure as threshold for the dependent variable, i.e. modules with one or more failures are
classified as failure–prone. The underlying analysis of design measures is based on ordinal analy-
sis, as it allows for changing the threshold with regards to what are viewed as being fault– and
failure–prone modules (Ohlsson et al., 1996). Actual threshold–values are not recommendations;
thresholds should be determined in individual projects on the basis of, for example, the level of
criticality of the system and market requirements. The primary objective of the thresholds as pre-
sented in this paper is to illustrate the outcome when applying the methods for identification of
failure–prone modules.

The predictability of the different models is viewed in Contigency tables and the kappa coeffi-
cients are calculated to measure the agreement in classification of the modules (Siegel and Castel-
lan, 1988). The kappa coefficient is the ratio of the proportion of times that the classifications is
correct to the maximum proportion of times that the classifications could be correct. If the classi-
fications completely agree, then kappa=1; whereas if there is no agreement between the classifica-
tions, then kappa=0. Kappa will assume -1 if there is a perfect missclassification.

The study is divided into three parts:

1. Identification of failure–prone modules using data from a previous release
This part is aimed at investigating whether the information from release n concerning fault–
and failure–prone modules is a good predictor of failure–prone modules in release n+1. More
than 90 percent of the modules in release n had one or more faults. Therefore, it is infeasible to
use one fault as a threshold. Thus, when fault–prone modules from release n is used to predict
failure–prone modules in release n+1, a threshold of five faults is used for the independent var-
iable as an indication of potential failure–prone modules. When failure–prone modules in
release n are used as the independent variable, one failure is used as threshold.

2. Identification of failure–prone modules using design measures
The initial objective was to build prediction models in release n for identification of failure–
prone modules based on design measures, which then should be validated with data from
release n+1. Due to variation in quality between the two releases this was not possible. Instead
design metrics were only evaluated within release n+1. Only the best design measure is

3

reported here, as the main objective is to investigate different opportunities to identify failure–
prone modules rather than evaluate which measures are the best predictors. To the best of our
knowledge there exists no empirical evidence that complexity values higher than a specific
threshold would indicate either fault– or failure–prone modules. However, there are results
suggesting relative stable distribution in line with the Pareto principle (Ohlsson et al., 1996).
Therefore, the threshold is based on the percentage of failure–prone modules in release n+1.
That is, 29 percent of the modules in n+1 had one or more failures. Hence, this percentage
value is used as a threshold for the design measures.

3. Identification of failure–prone modules from fault–prone modules
The objective of this part is to investigate whether the fault–prone modules identified in release
n and n+1 are good indicators of failure–prone modules in the two releases. This means that
fault data from testing is used to predict failure–proneness during operation. The rationale for
selecting thresholds is the same as in part 1.

To summarize, the main difference is when prediction can be made. The three parts imply three
different points of time in a project, namely: project start (part 1), design phase (part 2), and test-
ing phase (part 3). It is important to remember that the sooner we are able to identify modules
which are likely to be failure-prone, the sooner we can take appropriate measures to deal with
them. For example, we can allocate the best people, intensify inspections or take other special
improvement measures.

3 Failure–prone modules from history
For software systems, it is normal practice that a system is regularly upgraded and released in new
versions. This implies that some parts of the system are the same in different releases. This infor-
mation can be used to apply experience from one release to the next release or following releases.
In this empirical study, the hypothesis is that fault– or failure-prone modules in release n are likely
candidates for being failure–prone in release n+1. It was possible to trace 69 modules developed
for release n that were modified in release n+1. The data from the historical analysis is shown in
Table 1. It should be noted that only four modules were failure–prone in release n, see analysis A,
while 18 modules were failure–prone in release n+1.

To evaluate the goodness of the predictions, the prediction errors must be considered. This
includes two different types of errors: failing to identify failure–prone modules and identification
of modules as failure–prone when they are not. These are hereafter referred to as errors of type I
and II respectively. It should be noted that a correct identification means actually pin–pointing a
certain module correctly.

To evaluate the goodness of the predictions, the prediction errors must be considered. This
includes two different types of errors: failing to identify failure–prone modules and identification
of modules as failure–prone when they are not. These are hereafter referred to as errors of type I
and II respectively. It should be noted that a correct identification means actually pin–pointing a
certain module correctly.

4

Analysis A in Table 1 illustrates that even though the type I error is as high as 78%, there is no
type II error. This means that the modules that are failure–prone in release n are all failure–prone
in release n+1. Possible explanations for this are the actual type of failure and late erroneous fault
correction in test.

For analyses B and C, we have used five faults as a threshold for the independent variable. It has
earlier been suggested (Khoshgoftaar and Kalaichelvan, 1995) that this should be used as thresh-
old for fault–prone modules. The threshold could therefore indicate failure–proneness. Using one
fault is not reasonable since this would identify 63 modules as being failure–prone. Even with a
threshold of five faults in analysis B as many as 61 percent (42/69) of the modules are identified
in release n as failure–prone. However, only 78 percent (14/18) of all the failure–prone modules
in release n+1 are identified. Therefore, fault–prone modules in release n are poor predictors of
failure–prone modules in n+1. This is also true for analysis C.

Another possible alternative would be to select a threshold based on the percentage of failure–
prone modules in release n+1, i.e. assuming that this proportion of fault– and failure–prone mod-
ules will be stable over later releases. The number of potential failure–prone modules would be
more realistic using 26 percent (18/69) as a threshold. However, only 28 percent of the failure–
prone modules would be identified. This also holds for analysis C. Therefore, the two models in
analyses B and C are not applicable.

4 Failure–prone modules from design measures
Earlier studies (Ohlsson et al., 1996) have indicated that models built on design metrics are
worthwhile when the total number of faults and failures are considered as the dependent variable.
Thus, it is reasonable to try this approach for failure–prone modules. In this study, fourteen differ-
ent design measures are used to build prediction models for release n+1. Spearman’s correlation

Table 3–1.

Analysis Aa

a. Kappa 0.30

Analysis Bb

b. Kappa 0.16

Analysis Cc

c. Kappa 0.32

Threshold=1 Threshold=5 Threshold=5

Failure(n) Fault(n) Fault+
Failure(n)

Actual F Not F F Not F F Not F

 Failure-prone(n+1)
(18 observation)

4 14 14 4 15 3

Not Failure-prone(n+1)
(51 observations)

0 51 28 23 28 23

Total observations 4 65 42 27 43 26

Misclassifications
of type I and II

78% (14/18) 0% (0/51) 28% (4/18) 55% (28/51) 17% (3/18) 55% (28/51)

Overall misclassifications 20% (14/69) 46% (32/69) 45% (31/69)

5

coefficient (Siegel and Castellan, 1988) was used for a first analysis. All potential variables have
low correlation values (below 0.35). There was, however, a rather low correlation among some of
the variables, hence it could be possible to improve the model by combining the variables into
more complex models. Multiplicative aspects of the potential variables will be investigated in
later studies. In this particular case, the best design measure predictor was IS, which is the number
of input–signals for a module in the design. The result was later compared with lines of code,
which was found to be doing even worse.

It has been suggested that prediction models should first be developed for one release, validated in
the succeeding release, and then applied in the third release. However, the quality of the two
releases varied widely, and it was therefore not possible to do so in this study. From a modelling
point of view, the number of failure–prone modules in release n was too few. Instead, the explan-
atory ability of design metrics was evaluated by building the best possible model based on data in
release n+1. The results shown in Table 2 are based on a threshold of one failure, which corre-
sponds to 29 percent of the modules.

From Table 2, it can be seen that the explanatory ability is unsatisfactory, i.e. the misclassification
is too high, including a large proportion of both type I and II errors. This, in combination with the
fact that the quality of the two releases differed, suggests that more complete models should be
investigated, for example including verification effort and quality.

5 Failure–prone modules from fault–prone modules
The data from the testing phase can be used for both releases to predict the failure–prone modules.
The problem with choosing relevant thresholds, discussed in respect to part 1, is relevant for this
part, too. The results of the analyses are shown in Table 3, using a threshold of five faults for the
independent variable.

Table 4–1.

Analysisa

a. Kappa 0.18

IS(n+1)

Actual F Not F

 Failure-prone(n+1)
(67 observation)

28 39

Not Failure-prone(n+1)
(165 observations)

39 126

Total observations 67 165

Misclassifications 58% (39/67) 24% (39/165)

Overall misclassifications 34% (78/232)

6

The misclassification is also too high in this analysis. This means that modules that are fault–
prone during testing are not failure–prone. A possible explanation is that other types of defects are
discovered in operation, such as performance problems, that are difficult to test. This explanation
is supported by experienced developers from Ericsson. This could also explain the result in part 1.
A possible explanation of the fact that failure–prone modules in n are failure–prone in n+1 could
be that modules which are critical from a capacity perspective in release n, will remain so in
release n+1. The results indicate the need for a better understanding of the types of defects that
result in failures and the types of the failures themselves. The results also stress the need to iden-
tify factors causing the defects which result in failures. Increased understanding is essential for
quality improvement.

6 Conclusions
In this paper we have investigated the opportunity to predict failure–prone modules based on fault
and failure data from two succeeding releases, design metrics, as well as test data. The study
revealed that failure–prone modules in release n are failure–prone in n+1. Other suggested inde-
pendent variables are poor predictors of failure–proneness. However, this is not the same as say-
ing that they do not explain any of the variation. It only means that on their own they are poor
explanatory factors. Instead, the study suggests that methods that combine these different inde-
pendent variables are needed.

In this study, we have addressed two consecutive releases of a software system. This is an impor-
tant aspect as in most cases it is not possible to both build, validate and use a prediction model
within one release. It is, thus, important to investigate how to build models in one release, validate
the model in the next release and then use the model in the third release. The transferability of a
model between a software system’s releases is crucial to success in the mission of identifying fail-
ure–prone modules prior to the operational phase.

A major problem with predictions is that failures are dynamic, hence it may be difficult to identify
failure–prone modules using static measures. This is an issue which has to be further studied. One
potential solution would be to take the use of modules into account when predicting failure–

Table 5–1.

Analysis na

a. Kappa -0.08

Analysis n+1b

b. Kappa 0.06

Fault(n) Fault(n+1)

Actual F Not F Actual F Not F

 Failure-prone(n)
(13 observation)

5 8 Failure-prone(n+1)
(67 observation)

47 20

Not Failure-prone(n)
(117 observations)

77 40 Not Failure-prone(n+1)
(165 observations)

102 63

Total observations 82 48 Total observations 147 83

Misclassifications 62% (8/13) 66% (77/117) Misclassifications 30% (20/67) 62% (102/165)

Overall misclassifications 65% (85/130) Overall misclassifications 53% (122/232)

7

proneness. This would allow for capturing the dynamic aspects of usage in the independent varia-
ble.

Another important issue which has been addressed here is the point of time when we are able to
identify failure–prone modules. To improve the usefulness of the predictions, they should prefera-
bly be done at an early stage. In this study, we have focused on data from the previous release, the
design and the test phase. The knowledge from the previous release is important in identifying
failure–prone modules, but this is not a feasible approach for new modules. Thus, it is very impor-
tant to find early indicators of failure–proneness, since this is the only way to enable us to address
the problem within the same release.

Models which identify failure–prone modules are important not only in enabling prediction dur-
ing the operational phase, but also as a planning and control tool during development. Managers
may use these models to improve the resource allocation for design, both in terms of effort and
experience. Furthermore, knowing which modules are most likely to be failure–prone in operation
suggest that the modules will be tested and inspected differently. Therefore more attributes need
to be considered and incorporated in the models, for example verification effort and quality, in
line with Fenton et al. (Fenton et al., 1995), to explain the variation and to be able to apply the
models in subsequent releases.

Future work should not only aim at building these more complete models, but also aim at investi-
gating additative and multiplicative aspects of design measures and measures from different
phases, in order to gain more knowledge about how such a component fits into a more complete
model. The results in this study also suggest that prediction models that are only based on test data
will have limited applicability in real projects aiming at addressing operational issues.

Acknowledgement
The authors would like to thank Ericsson Telecom AB for supporting this empirical study.

References
Fenton, N. E., Neil, M., and Ostrolenk, G. (1995). Metrics and models for predicting software de-

fects. Technical Report CSR/10/02, Centre for Software Reliability, City University, London,
UK.

Khoshgoftaar, T. M. and Kalaichelvan, K. S. (1995). Detection of fault-prone programs modules
in a very large telecommunication system. In Proceedings of The Sixth International Symposi-
um on Software Reliability Engineering, pages 24–33, Toulouse, France.

Munson, J. C. and Khoshgoftaar, T. M. (1992). The detection of fault-prone programs. IEEE
Transactions on Software Engineering, 18(5):423–433.

Ohlsson, N. and Alberg, H. (1996). Predicting fault-prone software modules in telephone switches.
To appear in IEEE Transactions on Software Engineering.

Ohlsson, N., Helander, M., and Wohlin, C. (1996). Quality improvement by identification of fault-
prone modules using software design metrics. In Proceedings of Sixth International Conference
of Software Quality, pp. 1-13, Ottawa, Canada.

Siegel, S. and Castellan, N. J. J. (1988). Nonparametrics Statistics for the Behavioral Sciences.
McGraw-Hill, second edition.

