
A Method for Understanding
Quality Attributes in Software Architecture Structures

Mikael Svahnberg, Claes Wohlin, Lars Lundberg, Michael Mattsson

Department of Software Engineering and Computer Science
Blekinge Institute of Technology, PO Box 520, S-372 25 Ronneby SWEDEN

Phone: +46 457 385000

[Mikael.Svahnberg|Claes.Wohlin|Lars.Lundberg|Michael.Mattsson]@bth.se
ABSTRACT
To sustain the qualities of a software system during evolution, and
to adapt the quality attributes as the requirements evolve, it is nec-
essary to have a clear software architecture that is understood by
all developers and to which all changes to the system adheres. This
software architecture can be created beforehand, but must also be
updated as the domain of the software, and hence the requirements
on the software system evolves. Creating an architectural structure
for a system or part of a system so that the architecture fulfils the
desired quality requirements is often hard. In this paper we propose
a decision support method to aid in the understanding of different
architecture structure candidates for a software system. We pro-
pose a method that is adaptable with respect to both the set of
potential architecture structures, and quality attributes relevant for
the system’s domain to help in this task. The method creates a sup-
port framework, using a multi-criteria decision method, supporting
comparison of different software architecture structures for a spe-
cific software quality attribute and vice versa. Moreover, given a
prioritization of quality attributes for the software system, or part
thereof, the most suitable software architecture structure can be
indicated using the created framework.

Categories and Subject Descriptors
D2.2 [Design Tools and Principles] Decision Tables, D2.11 [Soft-
ware Architectures] Patterns.

General Terms
Design, Experimentation

Keywords
Architecture Structures, Quality Attributes, Analytic Hierarchy
Process

1. INTRODUCTION
In [16] Parnas describes the phenomenon of software aging. He
ascribes this to two causes: (1) the domain changes around the
software and (2) changes to the system are introduced in a careless
manner, which degrades the system. Part of the solution to both of
these problems may be found in having and maintaining a clear

and updated software architecture for a software system. As is also
described in [16], having an architecture that all changes must be
related to will help to prevent the second form of decay. As the
domain of the software evolves, so will the requirements on the
software system, and hence the architecture needs to be re-evalu-
ated so that it still reflects a modern system that fits the evolved
domain. By doing this on a regular basis, we believe that the first
form of aging can be, if not hindered, so at least relieved.
Furthermore, an appropriate architecture is not only governed by
functional requirements, but to a large extent by quality attributes
[2][3][6]. However, knowing this, it is still a non-trivial task to cre-
ate an appropriate architecture. There are usually more than one
quality attribute involved in a system, and the knowledge of the
benefits and drawbacks of different architectural structures with
respect to different quality attributes is not yet an exact science.
Decisions are often taken on intuition, relying on the experience of
senior software developers.
This introduces a risk that a particular architectural structure is
chosen not based on relevant grounds but because the senior soft-
ware architect is familiar with aspects of the particular structure
and hence favours it over other unknown or less familiar struc-
tures. This leads to a situation where the desired quality attributes
are designed into the system as an afterthought, which invariably
leads to “patchy” and brittle systems that will not withstand the
tooth of time.
Quality cannot be added to the system as an afterthought; it has to
be built into the system from the beginning. Thus, an architecture
structure for any software system ought to be based on functional
needs, domain specificities and quality requirements. Hence, sup-
port is needed. The focus in this paper is on presenting some key
aspects for a method supporting the understanding of architecture
structures based on quality attributes. Such a method provides one
important input to decision-makers when designing a suitable sys-
tem structure, together with other considerations.
The term “software architecture structure” is used to denote an
architecture, or an architecture proposal of a software system,
which can be on any level of granularity, such as a software prod-
uct, a software module, software subsystem, or software compo-
nent. In this paper, we only focus on the software artefacts,
although the proposed method may be applicable on a system level
as well.

1.1 Description of Problem
In this paper, we address the following problem:

Given a set of requirements on quality attributes for a system
and a set of architecture structures, which architecture struc-
ture is the most appropriate, i.e. fulfils the quality require-
ments on the system best?

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SEKE '02, July 15-19, 2002, Ischia, Italy.
Copyright 2002 ACM 1-58113-556-4/02/0700...$5.00
- SEKE '02 - 819 -

This problem is also illustrated in Figure 1.

If a structured way to understand the benefits and liabilities of dif-
ferent architecture structures is found and used this may increase
the confidence in the decisions taken, and hence the software sys-
tems developed are not forced into a mould which may not be
entirely suitable for the problem at hand. Moreover, by re-evaluat-
ing the architecture decisions regularly, it is ensured that the archi-
tecture always reflect the current quality requirements, or we are
able to strive in the right direction.
A structured way to understand the benefits and liabilities of dif-
ferent architectures is important because, as shown by Johansson et
al. [9], different stakeholders tend to have different views of the
importance of various quality requirements for a system, and the
differing experiences of the software developers may also lead to a
different interpretation of the strengths and weaknesses of archi-
tecture structures. A structured method facilitates in this situation
because it enables us to identify where stakeholders and develop-
ers have differing opinions.
Furthermore, as indicated in Figure 1 we are also hoping to be able
to generate some form of uncertainty indicator, showing by which
degree of certainty the decision process nominates a particular
architecture structure.

1.2 Context of Method
The objective of the method proposed in this paper is to enable a
quantified understanding of different architecture candidates for a
software system. We assume, for the sake of this method, that a
small set of architecture structures is developed, after which the
proposed method provides support for deciding which of the archi-
tecture structures is best suited to meet the quality requirements of
the software system. This architecture may either be the architec-
ture that the system is designed according to, or an architecture to
strive towards when evolving the system. As is indicated in e.g.
[10], architectures degrade over time unless something is made to
prevent this. One way may be to have a clear architecture to relate
changes to.
It is not our intention that the proposed method should be used as
the only method when designing a software architecture structure.
Rather, we suggest that the method is used in conjunction with
other methods, possibly more qualitative in nature, or focussing on
other aspects of the software development, such as the functional
requirements. Examples of such methods are the design method
proposed by Hofmeister et al. [6], the Rational Unified Process [8]
and the QASAR design method [3]. The way we currently see it,
these methods are used to create architecture structures, which
constitute candidate designs for a system, after which the method
proposed in this paper is used to further understand and discern
between the strengths and weaknesses of the different architecture
candidates, and possibly comparing with the current architecture of
the system.
The context of the method is thus a specific situation within a par-
ticular company, where either the initial architecture of a system is

designed, or the current architecture of a system is evaluated
against newer architecture suggestions. The architecture structures
are identified within this context, and they are also evaluated
within this context. Similarly, the quality attributes are only the
ones that are relevant for the domain in question and for the busi-
ness model of the company.

The purpose of having a clear vision of the architecture is, as out-
lined earlier, to prevent the software system from aging prema-
turely. The architecture need thus not ever be actually
implemented, but can be an ideal architecture that only defines a
goal to aspire for.

1.3 Outline of Paper
The remainder of this paper is organized as follows. In Section 2
we present the proposed method for understanding architecture
structures based on quality attributes. In Section 3 we present an
example of how to use the proposed method. The method and
potential extensions are discussed in Section 4. Finally, the paper is
summarized and future work is discussed in Section 5.

2. METHOD
Methods have been developed to evaluate the quality attributes of
an architecture [13], and some extensions to incorporate costs have
recently been presented [14], but to the best of our knowledge little
research has been conducted with respect to quantifiably analysing
software architecture structures based on quality objectives.

The objective here is to propose a method for finding a suitable
software architecture structure based on the quality requirements
on the software product in question. The method is broken down
into a number of concrete steps.

1. Identify potential software architecture structures and key
quality attributes.

2. Create method framework.
3. Prioritize quality attributes for the software system to be

developed.
4. Identify software architecture structure.
5. Determine the uncertainty in the identification.
These steps are illustrated in Figure 2. As can be seen, the first step
is performed before the actual analysis process begins, but we
include it nevertheless as it is a vital part of any architecture design
process to identify potential candidates. Moreover, the FQA, FVC
and PQA referred to are outcomes of step 2 and 3, and are further
discussed in Section 2.2 and Section 2.3. Each of the steps in Fig-
ure 2 corresponds to a subsection below, where the steps are
described in further detail.

During the remainder of this paper, we will use a number of acro-
nyms to refer to different sets of data. These acronyms are pre-
sented in Table 1.

2.1 Step 1: Identify Candidates
This step is fairly simple to describe, although not trivial in a
development situation. The intention is that possible software
architecture structures are created, listed and described so that peo-
ple understand the differences and similarities between them. Fur-
ther, the key quality attributes for the system to be developed are
identified, listed and described.

It is outside the scope of this paper to describe how the architecture
structures are created, but as mentioned earlier, various design
methods (e.g. [3][6][8]) can be used to create the architecture
structures methods, and standard requirements engineering meth-
ods (e.g. [5][15]) can be used to obtain the quality attributes.

Figure 1. Illustration of Problem

Architecture
Structure

Architecture
Structure

Architecture
Structure

Quality
Req.

Quality
Req.

Quality
Req.

Decision
Process

Architecture
Structure

Uncertainty
Indicator
- SEKE '02 - 820 -

The outcome of this step is two lists containing the relevant soft-
ware architecture structures and quality attributes respectively. As
mentioned in Section 1.2, the actual structures and attributes on the
lists are dependent on the application domain and the situation in
which the software is developed.

We would again like to stress the fact that the architecture struc-
tures used can be on any level of granularity on any level of the
system (e.g. product, module, subsystem or component). Similarly,
we do not put any constraints on the level of granularity for the
quality attributes. However, in our experience it is beneficial if all
quality attributes are on the same level of granularity, as this facili-
tates comparison between the quality attributes. Moreover, it may
be easier if, as in the example provided in Section 3, the specific
quality attributes are grouped into categories to facilitate the prior-
itization process. The reason why this is easier is simply that the

number of inputs to the creation of the framework decreases,
which reduces the number of comparisons that need to be made.
This step produces the inputs to the decision process in Figure 1, in
that it generates a set of n architectural structures and a set of k
quality attributes.

2.2 Step 2: Create Framework
In this section we go through step two of the proposed method in
further detail. In Section 2.2.1 we discuss how the data is obtained
that is used to create the framework. In Section 2.2.2 we discuss
how this data, formed into two tables with a set of vectors in each
(we call these vector sets Framework for Quality Attributes (FQA)
and Framework for Architecture Structures (FAS), respectively),
are related to each other and how the FAS can be used to improve
the accuracy of FQA. As a result from this step a refined vector set
(called the FQAr) is generated. A final outcome of correlating
FQA and FAS is that we get an indication of the variance in the
data (represented in the vector FVC). How this is obtained is pre-
sented in Section 2.2.3. These sub-steps within step two, and the
different vector sets created during the process are illustrated in
Figure 3. Putting this into the context of the rest of the method,
there is a minor change to the solution outlined in Figure 2, and
these changes are illustrated in Figure 4 (for clarity, we have left
out processes and data sets not involved in the refined view).

Figure 2. Illustration of Solution

Architecture
Structure

Architecture
Structure

Architecture
Structure

Quality
Attribute

Quality
Attribute

Quality
Attribute

Architecture
Structure

Uncertainty
Indicator

Step 1
Identify Candidates

Step 2
Create Framework

Step 3
Prioritize

Quality Attributes

Step 4
Suggest Architecture

Step 5
Determine Uncertainty

FQA

PQA

Top-level Decision Process

Architecture
Structure

Architecture
Structure

Architecture
Structure

Quality
Requirements

Quality
Requirements

Quality
Requirements

FVC

Structure

Table 1. Acronyms used in paper

Acronym Description
FQA Framework for Quality Attributes. A set of vectors

where architecture structures are ranked according
to their ability to meet particular quality attributes.

FAS Framework for Architecture Structures. A set of
vectors where the support for different quality
attributes are ranked for each architecture structure.

FVC Framework for Variance Calculation. A vector of
variance indicators for a FQA vector set.

PQA Prioritized list of Quality Attributes. A list of qual-
ity attributes prioritized for a system to design.

FQA’ An intermediate result during the process of gener-
ating the FQAr.

FQAr A refined version of the FQA, where the values of
FAS have been used to increase the accuracy.

Figure 3. Illustration of step two of solution

Architecture
Structure

Architecture
Structure

Architecture
Structure

Quality
Attribute

Quality
Attribute

Quality
Attribute

Step 2.1
Obtain Data

Step 2.3
Calculate Variance

Step 2.2
Refine Data

FQA

FAS

FQA’
FQA’

FQA’

FQAr

FQAr

FVC

Step two: Create Framework

Figure 4. Refinements to Process

Architecture
Structure

Architecture
Structure

Architecture
Structure

Quality
Attribute

Quality
Attribute

Quality
Attribute

Step 2
Create Framework

Step 4
Suggest Architecture

FQAr

Structure
- SEKE '02 - 821 -

2.2.1 Obtaining Data for Framework
The basic idea of our method is that it is possible to understand
how good certain software architecture structures are for different
quality attributes. This implies that we can determine two things:

• A comparison of different software architecture structures for
a specific software quality attribute.

• A comparison of different quality attributes for a specific
software architecture structure.

To succeed in this a method for ranking software architecture
structures and quality attributes respectively is needed. Such meth-
ods are available from the management science literature, for
example in Anderson et al. 2000 [1]. The methods are often
denoted multi-criteria decision processes. One such method is the
Analytic Hierarchy Process, which was originally proposed by
Saaty 1980 [17]. This approach has been applied in software engi-
neering by other researchers addressing, for example, requirements
engineering [11] and project estimation [18]. The Analytic Hierar-
chy Process can be used to prioritize different items or aspects. The
result is a priority vector with relative weights on the different
items or aspects being prioritized. A study has been undertaken to
illustrate how the method framework can be determined when hav-
ing determined a suitable set of architecture structures and quality
attributes [19].

Applying such a method as the Analytic Hierarchy Process in our
context means that two sets of vectors may be created. The first set
of vectors is connected to prioritizing the software architecture
structures with respect to a certain quality attribute. This means
that it is possible to determine the order in which different software
architecture structures are believed to support a specific quality
attribute. Moreover, it is possible to get a relative weight using the
Analytic Hierarchy Process. The latter means that it is possible to
determine how much better a specific structure is with respect to a
quality attribute. The outcome of such a comparison is discussed in
Section 3.

It should be noted that the AHP method, by using a set of n*(n-1)/
2 pair-wise comparisons, creates a vector where all the alternatives
are prioritized and relative weights are assigned to each alternative.
This vector is normalized such that all values are between 0 and 1,
and together sum up to 1. As the method uses pair-wise compari-
sons and, ultimately, subjective measurements, creating this vector
is a fairly simple task. This method has successfully been used in
e.g. Karlsson and Ryan 1997 [11] and Karlsson et al. 1998 [12].

In this step of our proposed method, we use the AHP method to
create vectors signifying the relative support for different quality
attributes within architecture structures (FAS) and the relative
ranking of how well different architecture structures support differ-
ent quality attributes (FQA).

For this paper, it is not relevant to describe in detail how the set of
vectors is created. Instead, we present how such a set may look in
Table 2. In the table, we see four different architecture structures,
numbered from one to four, and four different quality attributes,
equally numbered from one to four. For each of the quality

attributes, the architecture structures relative support for the qual-
ity attribute in question is shown. The values, denoted FQAi,j in
this example, are normalized so that each row sums up to 1.
The second set of vectors is obtained in the same way, but here the
different quality attributes are prioritized for a specific software
architecture structure. This means that the relative support for a
quality attribute of a structure can be determined. This set of vec-
tors are shown in Table 3 with values FASi,j in the cells. It should
be noted that, for example, both FQA1,1 and FAS1,1 are measures
of support for QA 1 by SA 1, although from different perspectives.
This fact is used as part of the method to determine the uncertainty
in the identification of an appropriate software architecture struc-
ture. This is further elaborated in Section 2.2.2 and Section 2.2.3.
These two sets of vectors provide a framework for working with
software architecture structures with respect to software quality
attributes. The main objective of the current work is to use the
framework to indicate a suitable software architecture structure for
a system to design.

2.2.2 Adjusting the FQA
The fact that we are able to do both row-wise comparisons (FQA)
and column-wise comparisons (FAS) opens up some possibilities
to increase the quality of our estimations and at the same time
determining the uncertainty in our predictions. The nature of these
new possibilities can be understood by considering the following
very small example.
Consider a situation with two architectural structures, i.e., n = 2,
and two quality attributes, i.e. k = 2, and assume that we have
obtained the FQA and FAS in Table 4 and Table 5.
Let s1,1 denote the support provided by Structure 1 for QA 1 and
s2,1 denote the support provided by Structure 1 for QA 2. Further-
more, let s1,2 denote the support provided by Structure 2 for QA 1
and s2,2 denote the support provided by Structure 2 for QA 2. From
column one in the FAS we see that s1,1 = s2,1. Furthermore from
the FQA we get the relations: s1,1 =3s1,2/2 and s2,1 = 3s2,2/7. From
these three equations we get: 7s1,2 = 2s2,2. This is, however, incon-
sistent with the relation obtained by looking at column two in the
FAS, i.e., the relation obtained by this column is s1,2 = 3s2,2/2.
Consequently, the two vector sets are incompatible, which of
course is possible (and also highly likely) since the values in the
vector sets are obtained from (expert) opinions and experiences.
The fact that the information in the FQA and FAS is incompatible
can be used in (at least) two ways: first we can use the information
in the FAS for adjusting the values in the FQA, which is our main
concern; second, we can calculate a variance value (or some other

Table 2. Example FQA - Row normalized vector set

AS 1 AS 2 AS 3 AS 4 Sum

QA 1 FQA1,1 FQA1,2 FQA1,3 FQA1,4 1

QA 2 FQA2,1 FQA2,2 FQA2,3 FQA2,4 1

QA 3 FQA3,1 FQA3,2 FQA3,3 FQA3,4 1

QA 4 FQA4,1 FQA4,2 FQA4,3 FQA4,4 1

Table 3. Example FAS - Column normalized vector set

AS 1 AS 2 AS 3 AS 4

QA 1 FAS1,1 FAS1,2 FAS1,3 FAS1,4

QA 2 FAS2,1 FAS2,2 FAS2,3 FAS2,4

QA 3 FAS3,1 FAS3,2 FAS3,3 FAS3,4

QA 4 FAS4,1 FAS4,2 FAS4,3 FAS4,4

Sum 1 1 1 1

Table 4. FQA vector set

AS 1 AS 2
QA 1 0.6 0.4
QA 2 0.3 0.7

Table 5. FAS vector set

AS 1 AS 2
QA 1 0.5 0.6
QA 2 0.5 0.4
- SEKE '02 - 822 -

uncertainty indicator) based on the degree of inconsistency
between the two vector sets. In this section we discuss some sim-
ple techniques for doing this.

The calculation in this section is based on the assumption that the
values in the FQA and FAS are of equal quality. Using the AHP
method, this can be ascertained as AHP generates a consistency
index rating how consistent the answers are with each other. The
basic strategy is then to calculate k FQA’-vector sets, such that
each FQA’ is compatible with the FAS and one row in the FQA.
Having obtained these k vector sets, we adjust the FQA by simply
taking the average of these k FQA’-vector sets and k copies of the
FQA thus obtaining the FQAr which we can then use for identify-
ing an appropriate architectural structure (see Section 2.4). The
FQA’ vector sets stem from the FAS and by taking the average
between the k FQA’-vector sets and k copies of the FQA, the FQA
and FAS will contribute equally to the FQAr.

From the discussion above we see that based on the FAS and row
one in the FQA it is possible to calculate another row (i) in the new
FQA’-vector set in the following way:

.

In order not to complicate the presentation we assume that all
involved values are larger than zero.

Similarly, based on the FAS and row two in the FQA it is possible
to calculate another row (i) in the new FQA’-vector set in the fol-

lowing way: .

If we consider the small 2x2-vector sets in Table 4 and Table 5, we
get the two FQA’ vector sets in Table 6 and Table 7.

We see that the row sums in the two FQA’ vector sets are no longer
normalized to one. It is not obvious how one should handle this,
but we suggest that we add an additional step where the sum of
each row is normalized to one, so that the values in the FQA’ tables
are of the same magnitude as the already normalized FQA table.
The normalized FQA’ vector sets will thus be as presented in Table
8 and Table 9.

By taking the average of these two vector sets and two copies of
the FQA we get the FQAr in Table 10 which was our goal.

2.2.3 Variance Calculation
Since each value in the FQAr is the average of 2k values (k times
the value in the FQA and the value in the k normalized FQA’-vec-
tor sets) we can calculate the variance in the ordinary way. We will
thus obtain a variance vector set - the FVC-vector set. For the
small example above we would get the FVC in Table 11.

2.3 Step 3: Prioritize Quality Attributes
The next step of the method is to conduct a prioritization of the
quality attributes for the software system in question. Different
methods may be applied for prioritization [12]. This includes sub-
jective judgement with or without consensus building and methods
such as providing a total sum of points to be divided between the
items or aspects you would like to Prioritize. Most methods have
however weaknesses and it is mostly hard to judge the goodness of
the Prioritization.

The Analytic Hierarchy Process (AHP) addresses some of these
problems [17], since it allows for a calculation of a consistency
index for the prioritization. This opportunity arises from the fact
that AHP is based on all pair wise comparisons of whatever we
would like to prioritize. In our example (Table 2 and Table 3), we
need to perform six comparisons for the quality attributes, since
we have four quality attributes. When using AHP, each pairwise
comparison is answered with a number between 1 to 9 in favour of
one of the elements in the pair to compare. This enables the cre-
ation of tables with numeric values for each element. Hence, the
outcome of the prioritization process is a vector (called PQA) with
relative weights, denoted PQAi, on the importance of the different
quality attributes for the software system in question, see Table 12.

More generally, we have to perform comparisons,
where n is the number of items or aspects to prioritize. This is the
price to pay when using a method such as AHP: the number of
comparisons grows fairly quickly. On the other hand, it is not
likely that we have a huge number of architecture structures or
quality attributes to prioritize (either for the framework or for the
prioritization of quality attributes of the software system to
develop). The number of architecture structures is limited by the
amount of time and effort it takes to develop them, so in a practical
setting there will most likely not be more than a few architecture
candidates developed. The number of quality attributes may be
larger, but this number can be reduced by grouping the quality
attributes into categories, each representing some aspect of the sys-
tem’s requirements. The number of quality attributes can also be
reduced by selecting a smaller set of quality attributes to focus on.
In our experience, for most software systems there is a small set of

FQA'i j,
FQA1 j, FASi j,

FAS1 j,
--------------------------------------=

FQA'i j,
FQA2 j, FASi j,

FAS2 j,
--------------------------------------=

Table 6. FQA’ based on
row one

AS 1 AS 2

QA 1 0.6 0.4
QA 2 0.6 0.27

Table 7. FQA’ based on
row two

AS 1 AS 2

QA 1 0.3 1.05
QA 2 0.3 0.7

Table 8. Normalized
FQA’ based on row one

AS 1 AS 2 Sum

QA 1 0.6 0.4 1
QA 2 0.69 0.31 1

Table 9. Normalized
FQA’ based on row two

AS 1 AS 2 Sum

QA 1 0.22 0.78 1
QA 2 0.3 0.7 1

Table 10. FQAr

AS 1 AS 2 Sum
QA 1 0.5 0.5 1
QA 2 0.4 0.6 1

Table 11. FVC

AS 1 AS 2
QA 1 0.036 0.036
QA 2 0.038 0.038

Table 12. Prioritized quality
attributes for system to develop.

Attribute Priority

QA 1 PQA1

QA 2 PQA2

QA 3 PQA3

QA 4 PQA4

Sum 1

n n 1–() 2⁄×
- SEKE '02 - 823 -

easily identified quality attributes that are more relevant to con-
sider, and these are the ones that should be used for the framework
and the PQA.

Further, it should be noted that each comparison is conducted very
quickly. This is based on experience from conducting this type of
studies in another area [12]. We have also conducted a related
experiment [19], in which we used five architecture structures and
six quality attributes. This resulted in 135 questions being asked to
each participant to create the framework (the FAS and FQA),
which took the participants approximately one hour of concen-
trated work to complete. (The first result came in after 45 minutes
and the last came in after 70 minutes.)

The outcome of this step is a vector with the different quality
attributes prioritized, and with a relative weight of their impor-
tance. This vector is used in the next step, where the data is used to
determine the most appropriate software architecture structure for
the given situation.

2.4 Step 4: Suggest Architecture Structure
As discussed above, we can obtain two kinds of vector sets: the
FQA and the FAS (plus the derived FQAr). Based on these vector
sets and the PQA-vector we are going to identify an appropriate
architectural structure. It may at first glance be tempting to try to
correlate the PQA-vector with the columns in the FAS, and select
the architectural structure which has the most similar profile. Con-
sider for example the following small example with a FAS in Table
13 and a PQA-vector in Table 15.

Without going into details about how we define the correlation, it
is clear that the profile of Structure 1 is closer to the PQA-vector
than the profile of Structure 2. The obvious conclusion would thus
be to select Structure 1 in this case. However, assume that the FAS
corresponds to the FQA shown in Table 14.

From the FQA we see that Structures 1 and 2 are equally good for
QA 1, and that Structure 2 is better for all other quality attributes,
i.e., we should in fact select Structure 2. The example above is
somewhat naive since Structure 2 is consistently better than Struc-
ture 1. However, the example illustrates that a good correlation
between a column in the FAS and the PQA-vector is not a good
criterion for identifying an architectural structure. Instead we sug-
gest that the FQA or the derived FQAr should be used for pinpoint-
ing a suitable structure.

We therefore suggest a very direct method which is: Suggest

structure i such that is as large

as possible.

2.5 Step 5: Determine Uncertainty
In order to obtain the uncertainty in our suggestion we can calcu-
late the variance for each structure i given the PQA-vector and the
FVC. From the rules of variance propagation we know that the
variance for structure i is obtained in the following way

.

We are thus able to determine the uncertainty in our suggestion.

2.6 Summary
In Section 2.1 architecture structures are created and quality
attributes are identified, upon which the FQA, FAS and the FQAr
vector sets created in Section 2.2 are based. These are then used to
suggest an architecture structure in Section 2.4.

Parallel to this, a variance vector set, FVC, is created in Section
2.2, which is used in Section 2.5 to generate indications of the
uncertainty in the identification of the architecture structure.
The outcome is thus an architecture structure, how much better
suited the problem than its competitors this structure is, and how
certain we are of the results.

3. EXAMPLE OF USAGE
In order to illustrate the method described in this paper, we present
a fictive case in this section. We do this to give a more comprehen-
sive presentation of how the method can be used. No importance
should thus be placed on the outcome of this example, as it is how
the method is applied that is the focus of the example.
The problem setting is that our fictive company is in the process of
creating a new product. The product to create is a component for a
telephony system as used as an example in [12]. This system is a
private branch exchange (PABX) for a small company with about
50 employees. Below, we describe how this company applies our
method when identifying an architecture structure for this PABX
system.

3.1 Step 1: Identify Candidates
For this software component for the PABX system our company
have a requirements specification, including a list of quality
attribute requirements. The quality attributes are categorized into:

• Performance (containing requirements on e.g. maximum
response time during normal operation and data throughput
during normal operation)

• Reliability (containing requirements on e.g. uptime and maxi-
mum number of allowed missed calls during various situa-
tions)

• Maintainability (containing requirements on e.g. the maxi-
mum allowable time to conduct corrective, adaptive and per-
fective maintenance)

• Portability (containing requirements on e.g. the maximum
number of modifications to change to a new hardware)

However, they are unsure which architectural structure is best
suited for the product. They have developed a few architecture
candidates using the Hofmeister et al. design method [6], but can-
not decide which is the most suitable. This because they do not
know how well the different architecture structures developed sup-
port different quality attributes. Nor do they know which of the
quality attributes in the product to build is most important to focus
on, and what effect this would have on the other quality attributes.
They can choose from the following architectural structures:

• Solution A: Centralized solution based on a Microkernel [4].

Table 13. Example FAS

AS 1 AS 2
QA 1 0.4 0.25
QA 2 0.3 0.25
QA 3 0.2 0.25
QA 4 0.1 0.25

Table 14. Example FQA

AS 1 AS 2
QA 1 0.5 0.5
QA 2 0.38 0.62
QA 3 0.25 0.75
QA 4 0.12 0.88

Table 15. PQA-vector

Attribute Priority
QA 1 0.4
QA 2 0.3
QA 3 0.2
QA 4 0.1

PQAjFQArj i,j 1=

k
∑

PQAj
2

FVCj i,j 1=

k
∑

- SEKE '02 - 824 -

• Solution B: Distributed solution based on a Microkernel [4].
• Solution C: Centralized solution based on a Blackboard [4].
• Solution D: Distributed solution based on a Blackboard [4].
The objective is to identify the best possible structure using the
proposed method, which recommend a structure based on quality
attributes.

3.2 Step 2: Create Framework
Using a multi-criteria decision process [1], e.g. AHP [17], the soft-
ware developers create two tables corresponding to the FQA and
FAS presented in Section 2.2. These two tables are presented
together in Table 16.

Although the values are created using subjective assessments of
the qualities of software architecture structures, it is our belief that
the subjective judgements of a set of professional software devel-
opers is an accurate representation of the actual qualities that said
architecture structures exhibit.

We would also like to point out that the values (albeit not the
names of the architecture structures or the quality attributes) are in
fact part of the results from a study [19] which we have conducted,
and represents the opinions of a single participant in this study. We
are currently conducting research on how separate participants’
opinions can be combined into a consensus framework.

Using these two tables and the process described in Section 2.2.2,
the FQAr is created, as presented in Table 17. This is the table that
is used in later stages.

Furthermore, a variance vector set FVC is created according to
Section 2.2.3, presented in Table 18.

3.3 Step 3: Prioritize Quality Attributes
Next, our fictive company let the stakeholders (in this case, the
stakeholders belong to the same company) prioritize the quality
attributes for the product to build. The resulting vector, corre-
sponding to the PQA-vector introduced in Section 2.3, is presented

in Table 19. This vector is created using the same multi-criteria
decision process as was used to create the FQA and FAS. As can
be seen, reliability is prioritized as being almost three times as
important as the second most important quality attribute, perform-
ance, which in turn is twice as important as maintainability. Porta-
bility, finally, is the least important quality attribute.

3.4 Step 4: Suggest Architectural Structure
Using the formula in Section 2.4, a value for each architectural
structure is obtained as presented in Table 20. The architecture
structure named Solution D has the highest value, and is hence
identified as the architectural structure upon which to base the
product. That Solution D “wins” is mainly because it has a very
high value for reliability in the FQAr, i.e. a very high support for
reliability compared to the other architecture structures, and this is
the quality attribute that was by far the most prioritized quality
attribute.

3.5 Step 5: Determine Uncertainty
The variance is calculated according to Section 2.5 (the values are
presented in Table 20), and is found to be rather low, which
strengthens the certainty that this is the correct choice. Moreover,
Solution D gets a nomination value (i.e. not the uncertainty value
but the strength by which our method nominates Solution D) that is
almost twice that of its competitors, which also strengthens the
decision. However, it also gets the highest uncertainty value,
which lessens the determination that this is the best architecture
slightly. We have not yet conducted any research on how to inter-
pret high uncertainty values, or what constitutes a high uncertainty
value.

4. DISCUSSION AND EXTENSIONS
A key element of the method in this paper is the framework, as the
method depends on whether it is at all possible to create this frame-
work. We have conducted an experiment where a framework for a
particular set of software architectures and a particular set of qual-
ity attributes is used [19]. In this experiment we use five of the
architectural patterns in Buschmann et al. 1996 [4] and the quality
attributes in ISO 9126 [7], together with the AHP method [17].

Table 16. Example FQA and FAS

So
lu

ti
on

 A

So
lu

ti
on

 B

So
lu

ti
on

 C

So
lu

ti
on

 D

F
Q

A
-S

um

Performance FQA 0.317 0.074 0.509 0.1 1
FAS 0.565 0.085 0.235 0.134

Reliability FQA 0.05 0.222 0.142 0.586 1
FAS 0.269 0.284 0.139 0.62

Maintainability FQA 0.065 0.576 0.105 0.254 1
FAS 0.075 0.571 0.081 0.183

Portability FQA 0.087 0.087 0.665 0.16 1
FAS 0.091 0.059 0.545 0.063

FAS-Sum 1 1 1 1

Table 17. Example FQAr

So
lu

ti
on

 A

So
lu

ti
on

 B

So
lu

ti
on

 C

So
lu

ti
on

 D

Su
m

Performance 0.332 0.084 0.437 0.147 1
Reliability 0.079 0.209 0.144 0.566 1
Maintainability 0.055 0.582 0.114 0.248 1
Portability 0.073 0.076 0.724 0.127 1

Table 18. FVC

S. A S. B S. C S. D
Performance 0.0062 0.0003 0.0136 0.0047
Reliability 0.0018 0.0004 0.0028 0.0054
Maintainability 0.0003 0.0003 0.0016 0.0018
Portability 0.0007 0.0003 0.0078 0.0024

Table 19. PQA vector for system to design

Attribute Priority
Performance 0.219
Reliability 0.637
Maintainability 0.106
Portability 0.038

Table 20. Value of each architectural structure

Architectural Structure Value Uncertainty
Solution A 0.132 0.00103
Solution B 0.217 0.00018
Solution C 0.227 0.00181
Solution D 0.424 0.00243
- SEKE '02 - 825 -

The next step is to conduct case studies to verify the contents of
such a vector set, and possibly to extend the formula presented in
Section 2.4, if it proves to be too simple a model. We are currently
designing such a case study, in which we intend to let a set of soft-
ware developers with more than ten years of experience within a
particular domain first develop a set of architecture candidates for
a system in this domain and then letting them use the decision sup-
port method in this paper and match the outcome of this with the
intuitive decision of the software developers.

As presented in Section 2.2, other ways to use the created frame-
work include using it to study similarities and differences between
different structures, identify strengths and weaknesses of different
structures, to apply the framework in the context of assessment and
evaluation of structures, and to use the framework in software evo-
lution.

Moreover, we intend to further explore the implications of vari-
ance. For example, it is not clear what to do when two architectural
structures score very similar, or equal, values when applying the
formula in Section 2.4.

5. CONCLUSIONS
In this paper we present a method to further the understanding of
the benefits and liabilities of different architecture structures with
respect to quality attributes. Moreover, the method can be used to
indicate which of the architecture structures that best suits the
quality requirements of a given software system.

The method takes as input a set of quality requirements for a soft-
ware system, and a set of architectural structures. During the pro-
cess two sets of vectors, containing (a) a comparison of different
architectural structures with respect to different quality attributes,
and (b) a comparison of different quality attributes with respect to
different architectural structures, are created and further refined.

The use of the method produces a list of values for the different
candidate architectural structures, of which the one obtaining the
highest value indicates the most suitable for the system to con-
struct.

The method, and our use of AHP to obtain the initial values, is a
way to systematically quantify the experience of the developers, as
it is the subjective judgements of the developers that are asked for
in step 2 (create method framework) and 3 (prioritize quality
attributes) of the method. Two of the major benefits of the method
is that it forces developers to systematically consider all possible
combinations and that it clearly indicates where the developers are
disagreeing. These disagreements will lead to discussions and,
eventually, a better understanding of the problem and hopefully an
agreement among the developers.

To summarize, the proposed method enables software designers to
take into account relevant quality attributes for a system and evalu-
ate these against all software architecture structure candidates for
the system. The architecture structure recommended by the method
is the one that, according to the developers, best meet the quality
attribute requirements for the system. This can then either be used
to actually create the software system accordingly, or by directing
evolution work to aspire towards the nominated architecture, in
order to work against software aging.

References
[1] D.R. Anderson, D.J. Sweeney, T.A. Williams, “An

Introduction to Management Science: Quantitative
Approaches to Decision Making”, South Western College
Publishing, Cincinnati Ohio, 2000.

[2] L. Bass, P. Clements, R. Kazman, “Software Architecture in
Practice”, Addison-Wesley Publishing Co., Reading MA,
1998.

[3] J. Bosch, “Design & Use of Software Architectures - Adopting
and Evolving a Product Line Approach“, Addison-Wesley,
Harlow UK, 2000.

[4] Buschmann, F., Jäkel, C., Meunier, R., Rohnert, H., Stahl, M.,
“Pattern-Oriented Software Architecture - A System of
Patterns“, John Wiley & Sons, Chichester UK, 1996.

[5] L. Chung, B.A. Nixon, E. Yu, J. Mylopoluos, “Non-Functional
Requirements in Software Engineering”, Kluwer Academic
Publishers, Dordrecht, the Netherlands, 2000.

[6] C. Hofmeister, R. Nord, D. Soni, “Applied Software
Architecture”, Addison-Wesley, Reading MA., 2000.

[7] “Software Qualities”, ISO/IEC FDIS 9126-1:2000(E).

[8] I. Jacobson, G. Booch, J. Rumbaugh, “The Unified Software
Development Process”, Addison-Wesley, Reading MA, 1999.

[9] E. Johansson, M. Höst, A. Wesslén, L. Bratthall, “The
Importance of Quality Requirements in Software Platform
Development - A Survey”, in Proceedings of HICSS-34, Maui
Hawaii, January 2001.

[10] E. Johansson, M. Höst, “Tracking Degradation in Software
Product Lines through Measurement of Design Rule
Violations”, to appear in Proceedings of the 14th
International Conference on Software Engineering and
Knowledge Engineering (SEKE), Italy, July 2002.

[11] J. Karlsson and K. Ryan, “A Cost-Value Approach for
Prioritizing Requirements”, in IEEE Software 14 (5):67–74,
1997.

[12] J. Karlsson, C. Wohlin and B. Regnell, “An Evaluation of
Methods for Prioritizing Software Requirements”, in
Information and Software Technology, 39(14-15):938-947,
1998.

[13] R. Kazman, M. Barbacci, M. Klein, S. J. Carrihe, S.G.
Woods, “Experiences with performing Architecture Tradeoff
Analysis”, in Proceedings of ICSE’99, Los Angeles CA., pp.
54-63, May 1999.

[14] R. Kazman, J. Asundi, M. Klein, “Quantifying the Costs and
Benefits of Architectural Decisions”, Proceedings of the 23rd
International Conference on Software Engineering (ICSE 23),
Toronto, Canada, pp. 297-306, May 2001.

[15] G. Kotonya, I. Sommerville, “Requirements Engineering”,
John Wiley & Sons, Chichester UK, 1998.

[16] D.L. Parnas, “Software Aging”, in Proceedings of the 16th
International Conference on Software Engineering, IEEE
Computer Society Press, Los Alamitos CA, pp. 279-287,
1994.

[17] T. L. Saaty, “The Analytic Hierarchy Process”, McGraw
Hill, Inc., New York NY, 1980.

[18] M. Shepperd, S. Barker, M. Aylett, “The Analytic Hierarchy
Process and almost Dataless Prediction”, in Project Control
for Software Quality - Proceedings of ESCOM-SCOPE 99,
R.J. Kusters, A. Cowderoy, F.J. Heemstra, E.P.W.M. van
Weenendaal (eds), Shaker Publishing BV, Maastricht the
Netherlands, 1999.

[19] M. Svahnberg, C. Wohlin, “Evaluation of Software Quality
Aspects for Architectural Structures using the Analythical
Hierarchy Process”, submitted, 2002.
- SEKE '02 - 826 -

