

C. Wohlin, "Performance Analysis of SDL Systems from SDL Descriptions",
Proceedings 5th International Forum on SDL, pp. 353-364, Glasgow, United

Kingdom, 1991.

 1

Performance analysis of SDL systems from SDL descriptions

Claes Wohlin

 Telesoft AB, Box 4148, S-203 12 Malmö, Sweden

Abstract
 This paper gives a brief introduction to a methodology for early performance analysis
based on SDL descriptions and models of the hardware architecture and the behaviour of the
users. It is described how the SDL descriptions can be transformed automatically into
descriptions capturing the original behaviour as well as the performance. In particular, the
benefits and the opportunities with the methodology are presented by an example.

1. INTRODUCTION

 A brief introduction will be given to a methodology for performance analysis of software
systems based on transformations of SDL system descriptions (section 2), as well as to the
transformation and generation rules of the SDL descriptions (section 3). The emphasis of the
paper will be on an example showing the opportunities the methodology and in particular the
transformation of SDL descriptions will provide (section 4). The rules are currently being
implemented in a tool prototype, which will be described briefly (section 5). Finally, some
conclusions will be drawn based on the experiences from the work (section 6).
 Methods for early performance analysis of the software systems being developed are soon
a necessity, [1], since it will be too expensive to develop a product and in the end realise that
it will not fulfil the performance requirements. Instead it would be favourable to evaluate the
performance at an early stage and be able to study different solutions from the performance
perspective. For example, a poor software solution can be re-designed before implementation,
different allocations of the software processes in a distributed architecture can be evaluated or
the suitability of numerous different architectures can be investigated before choosing the
actual architecture to run the software on. These possibilities have lead to that a methodology
for performance analysis based on software descriptions, in particular SDL [2], and models of
the hardware architecture and the behaviour of the surrounding environment has been
developed. The methodology covers two aspects of performance analysis of SDL systems,
i.e. analysis of the SDL descriptions alone and analysis of software, architecture and
environment in a joint model.
 The methodology is based on three modelling concepts, which are put together to form a
simulation model for the software system. The modelling concept capturing the behaviour of
the software can be generated automatically from the SDL descriptions, in our particular case
using SDT [3, 4, 5]. This is, however, not a requirement for using or implementing the
methodology.
 The ideas presented regarding the methodology and its application to SDL systems are
state-of-the-art research and development. Most of the research has been carried out at the
Department of Communication Systems at Lund Institute of Technology, Sweden [6], while
the implementation and the refinement of the ideas are being made at Telesoft. As far as
known by the author no similar approach to performance analysis of software systems has
been presented in the literature, not for any description language and in particular not for
SDL. This also means that work remains to be done, but the results obtained so far seem

 2

promising. The methodology and the example discussed below are presented in detail in [6]
and an overview of the methodology has been presented in [7]. It is also the objective to
present more results and experiences as the work proceeds.

2. METHODOLOGY OVERVIEW

 The methodology for performance analysis at an early stage of the development of
software systems is based on that an analysis object and its environment are identified, see
figure 1. The analysis object can be anything between a software process and a complete
system.

Analysis

object

Env ironment

Env ironment

Demand

Model

Use Process

Model

(software)

Queue

Architecture

Model

Performance Protot yping Simulator

Part of system

to be analysed, i.e.

both architecture

and software.

Figure 1. An overview of the performance analysis methodology

 The basis for the methodology is that it is possible to divide the problem domain into three
initially independent parts, i.e. application software, architecture (e.g. processors, busses,
operating system) and the surrounding of the analysis object, hereafter denoted environment.
These three aspects are modelled in one model each, i.e. application software - Use Process
Model (UPM), architecture - Queue Architecture Model (QAM) and environment -
Environment Demand Model (EDM). The former, i.e. UPM, is to be generated automatically
from the application software descriptions (in particular SDL), while the QAM and the EDM
are described with simulation models formulated in SDL. This type of models has been used
during several years to do performance analysis of telecommunication systems, see for
example [8, 9]. In the future it ought to be possible to generate skeletons of the QAM and the
EDM respectively. Further work is, however, required.
 The three models are then put together to form a simulation model of the system, i.e. the
Performance Prototyping Simulator. The advantage with this concept compared to traditional
performance simulations is that the actual behaviour of the software is incorporated in the
analysis at an early stage, which seems utterly important since a lot of the dynamic behaviour
of the system is described by the software. This means that poor solutions can be detected
and that different solutions can be evaluated from a performance viewpoint before final
implementation. The methodology also allows the analyst to do separate analysis of the
software, i.e. to use an in some sense ideal architecture, and a complete system analysis. Both
approaches ought to be applied to the software system being developed. The former provides

 3

information about bottlenecks in the software, while the latter evaluates the total behaviour of
the system (or part of the system).

3. TRANSFORMATION AND GENERATION RULES

 The methodology requires tool support in particular a simulator for SDL systems is
needed. The simulator ought to support both functional and performance simulations. The
latter can be based on the functional simulator complemented with several packages
containing for example routines concerning files, random numbers, lists and information
about other processes. The latter can be exemplified with that it ought to be possible to find
out the process identities of all processes of a specific type. The preprocessor to the simulator
must be able to transform the SDL system descriptions into new SDL descriptions capturing
the performance behaviour as well as the original functional behaviour.
 The transformation and generation can be grouped into two areas, i.e. the handling of
hierarchical processes and the transformation of the SDL symbols. The concept of
hierarchical processes is introduced to cope with that the transformed software descriptions
shall execute on a simulation model of the architecture. The latter is also described with SDL
processes, though it is a simulation model instead of a system description. Unfortunately, it is
impossible to describe the actual transformations in any detail in a paper like this. The
presentation below is only meant to give a flavour of the type of transformations that is
needed. The transformation rules are presented in detail in reference [6].
 The original SDL system is transformed into a partial simulation model (UPM), in which
the modelling concepts from the methodology can be found. A new system and new blocks
are generated. The new entities are connected together with channels. The signals from the
original SDL system are transformed into a form which supports the handling of hierarchical
processes, i.e. almost all signals are sent via the architecture instead of directly between the
software processes as specified in the SDL system. Four types of signals in the original SDL
system have to be handled, i.e. signals to the environment, between blocks, between
processes and within processes. Some transformation of the processes are needed as well to
support the handling of hierarchical processes. The software processes must know which
architecture process they are running on. The signal sending has to be adapted to the fact that
the signals shall be sent via the architecture, which includes both adding new parameters to
the signals and re-directing them. Finally, the transformed processes must request execution
from the architecture process on which they are executing. These transformations take care of
the proposed handling of hierarchical processes, see reference [6].
 The actual transformation of the original SDL system consists of several activities. The
symbols have to be transformed according to the rules discussed in reference [6]. It is
determined which parts of the SDL system that shall be transformed. The execution times for
different symbols are modelled as delays. The decision boxes containing informal text are
transformed by using random numbers, i.e. the user can decide the probability for different
paths and for each execution a random path is chosen according to the probabilities given by
the user.

4. AN EXAMPLE OF PERFORMANCE ANALYSIS FROM SDL

 The main emphasis of the paper is on this section, where an example transformed
manually and complemented with simulation models of the architecture and the environment
respectively is described. The main objective with the example is to form an understanding of
how the presented methodology can be put into practical use.

 4

4.1. Introduction
 The presented example is the basis for implementing the transformation and generation
rules into a tool prototype, i.e. an automatic translator from SDL/PR (system descriptions) to
new SDL/PR (system descriptions including the performance aspect). This will be described
further in the next chapter. The example will contain both software and architecture, but the
Performance Prototyping Simulator shall be able to handle analysis of software and an ideal
architecture as well. This type of analysis shall be done to identify bottlenecks in the
software. It is, however, felt that the combination of software descriptions with models of the
architecture and the environment is more complicated than the analysis with an ideal
architecture.
 The objective with the example, from the implementation point of view, is to evaluate the
rules for transformation and the handling of software processes that are executed on the
architecture. The actual example is of minor interest. The reader is not supposed to
understand what the example actually does, but rather to be able to follow the methodology
as well as to understand how it can be applied and used. The presented methodology is
general. It does not in itself depend on the use of SDL, which only is used as an example of a
suitable description technique. The methodology does not depend on a particular tool set
either, but it is of course valuable if an existing tool set can be complemented, instead of
developing a tool environment from scratch. SDT has been used in this example and it has
been found suitable for implementing the performance prototyping simulation concept.

4.2. General description
 The example will describe the communication between two very simple telephone
exchanges, which only provide the subscriber with the possibility to call a local call (within
the same exchange) or long distance call (to the other exchange). The architecture is
modelled with three processes, one describing an exchange, one modelling the
communication channel between the exchanges and one process handling the administration
of the architecture. The service provided by the exchange is specified with seven SDL
processes. The environment is modelled with five processes. Some of the processes are
created and terminated dynamically, and several instances of the same process type may exist
simultaneously. This means that the example in total will include 15 processes. The actual
content of the processes is of little interest in an example like this, and because of this it will
only be described very briefly below.
 The example can be summarised by:
• 5 processes modelling the behaviour of the subscribers (environment).
• 3 processes modelling the architecture.
• 7 processes describing the services provided by the software.
 The environment and the architecture described with the processes above are the
Environment Demand Model and the Queue Architecture Model respectively. The Use
Process Model is found through transforming the SDL descriptions of the services by
applying the transformation rules. The system layout of the example including the
environment can be seen in figure 2.

 5

Processor Processor

Call

Gener.
Monitor

A-sub. B-sub.

ENVIRONMENT

Communication

Communication

ARCHITECTURE

SOFTW ARE

SDL processes

according to

system descriptions

EXAMPLE LAYOUT :

Creator

Call

Gener. Monitor

A-sub. B-sub.

ENVIRONMENT

Creator

Figure 2. Layout of the example

 The example will be gone through in several steps, i.e. description of the original SDL
design, transformation of the descriptions, modelling of the architecture and the environment
respectively and finally the execution of the obtained simulation model. These steps shall
hopefully convince the doubter that the performance prototyping simulation concept will be a
powerful way of doing early performance analysis of software systems.

4.3. The SDL system

Characterisation
 The system can be characterised with the following:
• All "important" (in some sense basic) symbols are present in the example.
• The system consists of more than one block.
• The signalling is specified in detail, while the other symbols often contain informal text.
 It has been the objective to let the SDL system contain most of the main features used
when working with SDL systems, e.g. infinite number of instances, use of predefined
primitives as 'sender' and 'offspring'.

 6

Brief description of the software processes

 The SDL system consists, as pointed out, of 7 processes, but before these are presented the
system and block level have to be discussed. The system consists of two blocks. The first
block handles all activities that concern subscribers and the second one is a block responsible
for collecting the statistics of the telephone exchange.
 The statistics block is simple, it only consists of one process of which one instance is
created at the system start and it exists the whole life time of the system. The only thing to be
noted with the process is that it calls a procedure regularly, which describes the times the
statistics are put on a file.
 The subscriber block consists of six processes, where one process is created by the system.
This process is responsible for creating two monitors (one for each processor). The monitor
process is the receiver of incoming calls and it creates other processes that handles the
subscribers, both A- and B-subscribers. The B-subscriber process is created by the monitor in
cases of a long distance call, otherwise the B-subscriber process is created by the A-
subscriber process. The B-subscriber process is quite easy and it handles the communication
with the B-subscriber in the environment. The monitor process also creates the two processes
controlling the code receiving.
 The process handling the A-subscriber creates a digit handler and is responsible for
keeping the contact with the A-subscriber in the environment. The digit handler process
checks if there is any code receivers free and if there are any it reserves a code receiver for
the incoming call. The call is blocked if the code receivers all are occupied. The digit handler
is responsible for releasing the code receiver when it has been used.
 The code receiver process is not modelled in any detail at all. It consists mainly of signal
receiving, signal sending and informal text. This is an important aspect, i.e. that the processes
may be quite unspecified but still a performance analysis can be made by applying this
concept.

Analysis

 The SDL system has been analysed with the analyser in SDT. The analysis consists of the
activities: SDL/GR to SDL/PR conversion, syntax analysis, semantic analysis and dynamic
semantic analysis.
 The analysis was completed without syntactic and semantic errors, while the dynamic
analysis gave two warnings. The reason for the warnings were that signals were sent to
offsprings, but not all the offsprings could receive that particular signal. The SDL system was
studied in detail and it was found that this case never could occur. The warnings were left
without action.
 This does not mean that the SDL system is free from logical errors, to ensure this it is
possible to do a functional simulation, but the system has to be more complete to allow this,
see below.

Code generation and execution

 Code was generated with the simulator to do a functional simulation of the system. The
generation, compiling and linking succeeded. The execution started of as intended but failed
when it came to a decision with informal text, in which case the simulator did not know
which path to execute. The decision boxes with informal text shall be translated when doing
the transformation into a partial simulation model.

 7

4.4 Identify objectives with the simulation
 The objective with the performance prototyping simulation shall not influence the
translation technique applied, but it can influence the way the architecture and the
environment are described in the model. The objectives of the simulation can lead to that a
measurement process has to be included in the simulation system. In this case the objectives
will be;
• Determine the total execution times of each software process type on the processors. This

will give a possibility to identify the software bottleneck, since the available execution
time is known through the simulated time. This shall not be mixed up with the execution
time for the simulation program.

• The load of the communication links will be measured.
 These objectives will affect the processor process, the process modelling the
communication link and the Use Process Model processes. A complement is needed in the
Use Process Model processes to be able to measure for each process type, see below. The
latter measurement will require a separate measurement process. These objectives have to be
modelled by the user, when describing the architecture, the environment and introducing a
measurement process.

4.5. The transformed system
 The original SDL system is transformed applying the rules mentioned briefly above. The
transformation results in a new system level, where the original SDL system is a block. This
corresponds to the Use Process Model discussed above. The new system level also contains
three new blocks, i.e. one block modelling the architecture, one block modelling the
environment and one general block (used to control the simulation and to make
measurements). These three blocks are left without content, which means that the analysis of
the transformed system gives three errors (block missing).
 All block levels in the original system have been moved one step down in the hierarchical
structure. The processes in the Use Process Model are the result of applying the
transformation rules discussed above. It shall in particular be observed that all symbols with
informal text have been removed or replaced, but they are modelled in terms of delays. It
shall be noted that this provides a powerful way of making performance analysis without
completely specifying the content of all SDL symbols.

4.6. Architecture and environment models
 The formulation of the complete simulation model includes modelling the architecture, the
environment and describing the content of the general block. The environment is modelled
with five processes describing the behaviour of the subscribers, both A- and B-subscribers, as
well as a model of a call generator and a monitor which is responsible for creating the B-
subscriber when a call is made. The processes are all quite simple, since they only influence
the actual objective of this example through their presence and not their content.
 The processes in the general block are introduced to govern the simulation and to make
measurements according to the (pretended) objectives with the simulation. The measurements
are specified so that they shall cover some usual measurement situations.
 Finally, the architecture is modelled. This part is the most difficult in the example, since it
includes a general data structure which handles the connections between the different models
(UPM, QAM and EDM) as well as the routing within the Queue Architecture Model. The
actual content of the structure is generated by one process and the process modelling the
processor then works on the generated structure. The processor process is formulated so that
it can handle the structure independent of the actual generation.

4.7. The simulation system

 8

 This results in new SDL graphs describing the architecture, the environment and the
general utilities. It is also necessary to alter some of the generated Use Process Model
processes. These are changed due to the objective of measuring the load on the processors for
each process type. The additions are only minor, i.e. the graphs are complemented with a new
variable describing the process type, which shall be used to measure the load on the
processors from different process types.

4.8. Simulation results
 The simulation system can be executed after having been analysed, generated, compiled
and linked. The simulator in SDT is further discussed in references [4, 10]. It shall only be
pointed out that the simulator includes a monitor from which the simulator can be executed.
The user obtains the possibility of influencing the simulation in several ways, which is very
valuable when debugging the simulation program. After being convinced that the program
performs as intended, it is possible to execute the simulator and obtain measurement results.
It shall be noted that the obtained simulation model cannot only be executed for performance
analysis. It can also be used as a real time functional simulator. This means that the
methodology provides a way of doing functional simulations in cases where it in the normal
case is impossible (see above), i.e. for incomplete system descriptions (that is for example
descriptions containing informal text in decision boxes). The transformation and generation
provides the opportunity to execute the original not completely specified SDL system from a
functional perspective in a real time model environment as well. A functional error in the
SDL system was found in the original SDL system during the execution, see below.
 The input data to the simulation model is not based on any real figures. They are,
however, chosen to work as an input set where the relative size between the different inputs
are reasonable. The main objective is as pointed out earlier not the actual values, but to show
that the simulation actually can be performed based on the performance prototyping
simulation concept. The values on the parameters are easily changed since they are declared
as external synonyms in SDL.
 The following input has been used throughout the example to show the behaviour of the
simulation model: mean time to dial the digit: 0.5, mean talking time: 50, mean time the
phone is ringing before an answer: 5, mean transmission time on the links: 0.5, mean time to
route a signal in the processors: 0.005, and time between statistical output in the exchange:
10.
 The following execution times have been used for the different SDL symbols: state: 0.01,
input: 0.02, output: 0.02, task: 0.05, decision: 0.03, create request: 0.05, process termination:
0.03, procedure call: 0.02, procedure return: 0.01.
 Three parameters are of particular interest:
• The time when the A-subscriber thinks he has waited too long is first assigned the value

10, in which case the first output result below was obtained. The value is then changed to
be equal to the simulation time.

• The simulation time is set to 1000. This may be too short to obtain real confidence in the
output results, but since the actual figures are of minor interest it has been chosen short to
obtain the results quickly.

• The mean time between arrival of calls is varied from 10 to 1.5.
 The execution time of the simulation program becomes longer as the mean time between
arrivals is lowered. The reason is of course that more happens in the same time.
 The above input leads to two different results, where the first one is a functional result and
the second one the expected performance results.
 Functional result:
 A race between two signals is discovered, i.e. the behaviour of the system becomes
different depending on the order of two signals. A timer in one of the processes may be

 9

triggered (see above), which results in a signal sending and the termination of this process
instance. The signal sending in its turn shall stop further sending of signals from the receiving
process instance. Due to the delay in the architecture it may happen that the signal has not
reached the instance before it sends a signal. This means that the signal is sent to a process
instance that has terminated. This leads to a dynamic error in the simulation. The original
SDL system has been specified so that under some circumstances this will occur. Specifically
the problem arises for high loads. A re-design is therefore necessary to cope with this
problem, which would have been difficult to find without simulation. This is, however, not
done here since this only is an example, instead the problem is solved by assigning a new
value to the time which triggers the timer. It is assigned a value which is equal to the
simulation time and this means that the timer will never be triggered.
 Performance results:
 The results are shown in table 1. The table contains information about the mean time
between new calls, the utilization of the two links, the total load on the most used processor,
i.e. processor 1. The contribution to the load for the two processes that consumes most
execution power on processor 1 is also shown in table 1. An example for processor 1, when
the mean arrival time between calls is 10; the figure 45 stands for the time the process
A_Handler executes and the time 176 is the total execution time used on the processor, i.e.
out of 1000, which is the simulation time.

Table 1
Performance simulation results.

Mean arriv al

time calls

Utiliz ation

link 1

Utiliz ation

link 2

Processor 1

A_Handler

Processor 1

Statistics

10

7

5

3

2

1.5

0.06 0.17

Load

Pro. 1

0.18 45(176) 51(176)

0.10 0.24 0.24 64(240) 61(240)

0.16 0.22 0.31 84(306) 72(306)

0.24 0.42 0.51 144(509) 106(509)

0.35 0.59 0.70 197(698) 140(698)

0.54 0.86 0.98 283(981) 181(981)

 Some comments to the results in table 1 are worth making even if the actual result is of
minor interest. It can be seen that the link from processor 2 to processor 1 is utilized more
than the other, i.e. link 2. The reason is that the statistics process is only located on processor
1. It can also be seen that process A_Handler is the largest contributor to the load. It is
responsible for between 26-29% of the load, which means that a re-design of the process
perhaps ought to be considered. The statistics process contributes also very much and this is
probably a problem, since the statistics in an exchange can be hard to motivate to the
subscribers. A solution would be to distribute the statistics to all processors, and this will also
cut down the utilization of the communication link between processor 2 and processor 1.
 All in all it has been shown that it is possible to obtain interesting simulation results from
applying the proposed simulation concept. We are able to obtain information about the
performance and the functional behaviour of the SDL specification before implementing a
faulty or poor solution.

4.9. Conclusions

 10

 It can be concluded that the proposed methodology can be implemented in an existing tool
set for SDL, i.e. SDT. The presentation of the example has shown that rules can be
formulated for transforming and generating the Use Process Model processes from the
original SDL descriptions. It has also been proved that the generated processes can be
complemented with descriptions of the architecture and the environment, and it has in
particular been shown that the modelling concepts can be connected together. The three
proposed modelling concepts (UPM, QAM and EDM) are valuable, since they let the user
concentrate on one aspect at the time and then at the end connect them together. The
methodology will therefore be a valuable contribution to the possibilities of doing early
performance analysis and functional verification of software systems. The rules presented in
reference [6] and the actual application of them in the example, is being implemented in a
tool prototype within the SDT environment [3, 4, 5].

5. AUTOMATIC TRANSLATION FOR THE PERFORMANCE ANALYSIS

 The work with the methodology has two main objectives; improvement and refinement of
the methodology and secondly implementation of the results in a tool prototype.
 The latter work constitutes of writing a translator for SDL/PR (original software
descriptions) to new SDL/PR which captures the original functional behaviour as well as the
performance aspects of the software. This includes changing, deleting and adding information
compared to the original system design. The work is performed within the SDT environment
which means that the development effort is considerable less than if developing a stand alone
tool. Currently it is possible to generate most of the SDL/PR related to the handling of the
software's performance. The next step is to add the features necessary to handle the
hierarchical processes (see also above), i.e. the functions needed to be able to establish the
contact between the software (SDL) and the simulated architecture and environment. The
work has so far not reached any problems that cannot be overcome and the implementation of
the rest of the rules also seems quite straightforward.

 11

6. CONCLUSIONS

 The work and the experiences from it can be summarised in the following statements;
• Early performance and functional analysis is becoming an important issue in the near

future as the structure of the systems is changing and the complexity as well as the costs of
the systems are continuing to grow.

• It has been shown that it is possible to develop a methodology for early performance and
functional analysis based on transformation of software descriptions in SDL.

• The transformed software descriptions can then be combined with simulation models of
the architecture and the environment. This shows that the methodology provides an
opportunity to do analysis based on a joint model for software, architecture and
environment at an early stage.

• Finally, it can be concluded that it is possible to implement the transformation and
generation rules into a tool, which makes it possible to automatically generate the new
SDL descriptions that both captures the original functional behaviour and the
performance.

 The methodology provides a basis for;
• identifying software bottlenecks at an early stage
• evaluating different distributions of software processes in an architceture
• studying the introduction of new services in an existing system (network)
• examining different architectures ability to execute a given software description
• identifying system bottlenecks
 The work will continue and hopefully result in an improved methodology, a tool for
automatic generation of the Use Process Model and skeletons for the Queue Architecture
Model and the Environment Demand Model respectively. It is the objective that these efforts
shall improve the possibilities of doing performance and functional analysis of SDL systems
(containing informal text) at an early stage in the system life cycle.

7. ACKNOWLEDGEMENT

 The presented work is part of a project on methods for simulation and prototyping
techniques. The project is partly being funded by the Swedish Research Programme in
Information Technology (number 4) and partly by the Swedish Telecom.
 Many thanks to professor Ulf Körner, Department of Communication Systems, Lund
Institute of Technology, Sweden for valuable discussions and comments throughout the
research.
 I also would like to thank the following colleagues at Telesoft for enlightening discussions
regarding simulation, prototyping and performance analysis; David Rapp, Mats Löfgren, Jan
Karlsson, Anders Larsson and Henric Isacsson.
 Special thanks to Eva Hedman, Telesoft for introducing me to the development
environment within SDT and in particular for helping me out with some of the most difficult
problems encountered when implementing the tool prototype.

 12

8. REFERENCES

1 D. Rapp and G. Sjödin, Capacity models: a quality and a system design tool and an aspect

of systems, Proc. 5th Int. Conf. on Software Engineering for Telecommunication
Switching Systems, Lund, Sweden, 1983, pp. 128-135.

2 CCITT Recommendation Z.100, Specification and Description Language SDL, Blue book,
Volume X.1-X.5, 1988.

3 SDT 2 User's manual, Telesoft AB, 1990.
4 F. Belina, and G. Nilsson, SDT - SDL Design Tool, Proc. 3rd SDL Forum, Eindhoven,

Netherlands, 1987, pp. 8.1-8.9.
5 G. Nilsson, I. Ljungdahl, and P. Madsen, SDL toolbox for support different SDL

environments, In: SDL ´89: The language at work, O. Faergemand and M.M. Marques
(eds.), Elsevier Science Publisher, North-Holland, 1989, pp. 87-93.

6 C. Wohlin, Software reliability and performance modelling for telecommunication
systems, PhD-thesis, Dept. of Communication Systems, Lund Institute of Technology,
Box 118, S-221 00 Lund, Sweden, 1991.

7 C. Wohlin and D. Rapp, Performance analysis in the early design of software, Proc. 7th
Int. Conf. on Software Engineering for Telecommunication Switching Systems,
Bournemouth, United Kingdom, 1989, pp. 114-121.

8 T. Karlstedt, Experience with and Results from the Usage of SDL/SIM for Performance
Analysis, Proc. 5th Nordic Teletraffic Seminar, 1984, (In Swedish).

9 M. Sredniawa, B. Kakol and G. Gumulinski, SDL in performance evaluation, Proc. 3rd
SDL Forum, Eindhoven, Netherlands, 1987, pp. 21.1-21.11.

10 J. Karlsson and A. Ek, SSI - an SDL simulation tool, In: SDL ´89 - The language at work,
O. Faergemand and M.M. Marques (eds.), Elsevier Science Publisher, North-Holland,
1989, pp. 211-218.

