

H. Cosmo, G. Fagerhus, E. Johansson, E-A. Karlsson, P. Runeson, C. Sandahl,
A. Sixtensson and C. Wohlin (authors in alphabetical order), "Cleanroom

Software Engineering Applied to Telecommunications,
Proceedings Nordic Seminar on Dependable Computing Systems,

pp. 253-264, Trondheim, Norge, 1992.

 1

Cleanroom Software Engineering Applied to Telecommunications

Q-Labs Cleanroom Competency Centre (QCCC) 1

E-P Telecom Q-Labs

IDEON Research Park

S-223 70 LUND

Sweden

Phone: +46-46-182980

Fax: +46-46-152880

E-mail: qccc@q-labs.se

1 Members of QCCC are: Henrik Cosmo, Geir Fagerhus (Manager Q-Labs), Erik Johansson, Even-André Karlsson, Per Runeson,
Christer Sandahl, Anders Sixtensson (Project Leader QCCC) and Claes Wohlin.

Abstract

This paper presents a methodology for developing
software systems denoted Cleanroom Software
Engineering. The methodology has been developed at
IBM and Software Engineering Technology (SET) in the
USA, and is currently being adapted and applied to the
field of telecommunications by E-P Telecom Q-Labs.

The paper gives a brief introduction to Cleanroom. The
main objective of Cleanroom is to introduce a set of
engineering techniques which shall form a sound basis
for developing zero defect software. The emphasis in the
presentation is on the work made to adapt the
methodology to telecommunications.

The adaptations consist of two main areas, i.e. a
development method and a certification method. The
objective of the development method is to capture
several different aspects of the system at an early stage
by using different description techniques, while the
objective of the certification method is to certify the
reliability level, instead of as in traditional testing
locate failures.

It is in particular emphasized how the Cleanroom
methodology with its adaptations will provide a way to
develop dependable computing systems in the future.

1. Introduction

A dependable computing system can be obtained in two
major ways, either by making the system correct when
implementing it or by introducing different sorts of fault
tolerance in the system. In practice, the solution must be
to combine the two alternatives. The first alternative is
certainly the best approach, if it can be made without
higher costs.

A methodology called Cleanroom Software

Engineering, [Mills87, Mills88b, Dyer92], has shown
that it is possible to improve the software quality and in
the same time improve the productivity. This is obtained
through a rigourous approach from the beginning.
Cleanroom emphasizes:

• Organizational aspects, both through divisions into

different teams and by team responsibility for the
performed work within the team.

• Incremental development.
• Rigourous specification before design.
• Stepwise refinement in verifiable steps.
• Usage testing.
• Certification of the reliability.

Cleanroom has been developed at IBM and Software
Engineering Technology (SET) in the USA and it is
currently being adapted to telecommunication by Q-
Labs. The paper gives a brief introduction to Cleanroom
Software Engineering and in particular describes the
work in adapting Cleanroom for telecommunication
systems, i.e. a suitable development method as well as a
certification method.

It is described how the proposed development method
will give a sound basis for obtaining dependable
systems, by employing different description techniques
to capture the different aspects of system development at
an early stage. The development is made through
stepwise refinement. The method also includes a
rigourous inspection strategy as well as the important
aspect of team responsibility.

The presentation continues with a description of how the
usage of telecommunication systems can be modelled
and how the failure data can be used to make a statistical
quality control of the software. The latter includes
describing how a software reliability model can be
applied to the failure data to certify the reliability. The
certification method assures that the released product
will be dependable during the operational phase.

 2

It will also be discussed how Cleanroom Software
Engineering is believed to be one of the best ways
towards dependable computing systems in the future.
The on-going and future work with Cleanroom for
telecommunications is described briefly. Finally, some
conclusions from the work is presented.

It must in this context, however, be noted that
Cleanroom as well as the adaptations made can be
applied to other types of systems as well. The objective
of the adaptations made is primarily to cope with some
of the properties of telecommunication systems, e.g.
large real-time multi-user systems, for which the
original proposal of Cleanroom is not suited. Cleanroom
can though be applied to all types of systems, even if
some adaptations may have to be made to cope with
some special properties of other types of system. It is
believed that based on the original proposal in
Cleanroom and the adaptations made, most systems can
be developed with Cleanroom. Hence, software system
development has not to be error-prone.

2. Cleanroom Software Engineering

The Cleanroom methodology is based on the philosophy
that it is possible to develop zero defect software. The
overall principle in developing software systems using
Cleanroom is to remove defects in the same
development phase as they are introduced. Instead of
waiting for an executable code representation of the
system to perform tests and defect removal on. This
avoidance of defect transfer through the consecutive
development phases is the major reason for the high
quality and high productivity in development using
Cleanroom [NASA90, OS-32].

2.1 A Cleanroom environment

”The Cleanroom software development method has
three main attributes: a set of attitudes, a series of
carefully described processes, and a rigourous
mathematical basis” [Mills88b]. Attitudes from the
software engineers and managers to their job are very
important parts in the development process. Cleanroom
focuses on some points:

• The goal is producing zero defect software.
• All work is performed by teams. The team members

have joint responsibility for their products.
• Every step in the development is verified towards

the previous step.
• The manager must allow that time is spent on

specification, design and verification, which leads to
later coding.

• Certification of software reliability through
statistical usage testing.

2.2 Organisation

Cleanroom assumes that software is developed by
teams. Development tasks are managed by three
different types of teams, specification, development and
certification teams. The specification team produces the
specifications and a construction plan. The development
team implements the specified behaviour, there is no
place for interpretations and additions of their own.
Members of the development team neither compile nor
make unit testing. They leave their constructed program
parts as pure text, strictly verified to the certification
team. The certification team generates test cases,
compiles, tests and certifies the software reliability,
without bothering about the implementation, see figure
1.

2.2.1 Specification team

The first step in a Cleanroom software project is to

Specification

Construc tion

planning

Design a nd build

incre ment 1

Test gene ration

for incre ment 1Certify

incre ment 1

Design a nd build

incre ment 2

Design a nd build

incre ment 3

Test gene ration for

incre ment 1 and 2

Test gene ration for

incre ment 1, 2 and 3

Certify increm ent

1 and 2

Certify increm ent

1, 2 and 3

Solution

de ploy ment

Development team Certification team

Specification team

Figure 1. Outline over a three-increment Cleanroom project.

 3

produce the specification which consist of four parts:
external specification, internal specification, statistical
usage profile and a construction plan. The external
specification defines how the software shall behave and
be apprehended from the user´s point of view. The
internal specification must be implementation-
independent and defines the responses in terms of
stimuli history, i.e. the stream of stimuli to the program.
The statistical usage profile describes how the software
will be used, the stimuli generated to the program, and
their distributions. The construction plan describes how
the specification is decomposed into executable
increments. Every increment is a partial set of the total
functionality. This decomposition into executable
increments, makes it possible to get an early indication
on the software quality. The software quality is an
indication on the development process quality as well.
The possibility to certify the quality is given by the
ability to run and test every increment.

2.2.2 Development team

The development team works with the internal
specification for the actual increment as basis to
implement it into program code. The implementation is
done by stepwise refinement, following a strictly
defined algorithm. Every step is verified back to the
previous, before the next step in the process is started.
The developers have neither compiler nor debugger. The
common responsibility for the product forces the
developers to take part of and verify each other´s code.
It can be psychologically difficult in the beginning, but
is very good in practice because, as known, four eyes
can see more than two.

2.2.3 Certification team

In Cleanroom the certification always concerns the
accumulation of produced increments, see figure 1. Unit
testing is never used but is replaced by verifications.
The idea is that, because of the strictly controlled
development process, there is no need for such testing.
Experience shows that debugging of smaller units
correct smaller local faults, but introduce new global
errors [Adams84].

In parallel with the construction work, the certification
is started by generating test cases for the actual
increment, see figure 1. The basis is the statistical usage
profile, which is developed in the specification phase.
The test cases are generated by some statistical selection
method. The certification team compiles the code and
then the testing activities start. The aim is to certify the
software reliability. The results from executing the test
cases are used to estimate the current reliability level as
well as to predict the reliability of the next increment by
applying a software reliability growth model. The
software is always tested from the user´s point of view
described in the specification. Any failures occurring
and when they arise are documented, but it is a task for
the development team to deal with them.

2.3 Methods

To reach the goals for software development, some
methods are proposed in Cleanroom. Box Structures
[Mills88a, Mills86a] is a method for specification and
design. Stepwise Refinement and Functional
Verification [Mills86b, Linger79] are methods for
implementing code in small steps and verifying them
mathematically. Statistical Usage Testing [Cobb90]
describes how the certification is to be done in
Cleanroom.

The Cleanroom methodology is being adapted to
telecommunication systems by Q-Labs, i.e. to offer full
support to large multi-user systems with high quality
requirements. This has so far resulted in two major
developments which will be described in the subsequent
sections of the paper:

• a tailored development method for telecommuni-

cation systems.
• a method for statistical usage testing.

3. SMO development method

The SMO development method [Cosmo91] is a stepwise
refinement and verification method in which several
complementary description techniques are used to
capture different aspects of the system, as well as
providing different views on the system to capture more
faults early. Thus, the main goal with the method is to
support the production of correct specifications and to
give the base for removing defects as they are
introduced.

To cope with the problems specific for telecommuni-
cation systems, adaptations and extensions have been
added to the Cleanroom methods. This section will after
a brief description of the used Cleanroom concepts and
methods describe the adaptations done.

The development of SMO has been made for and is
currently used in a large development project at Ellemtel
Telecommunication Laboratories, [OS-32].

3.1 Box Structures concept

The Box structures concept is based on three basic
system structures that can be nested over and over again
in a hierarchical system structure. The three system
structures are called Black Box, State Box and Clear
Box. They represent different abstractions and provide
three aspects of a system or any of its sub-systems.

The Black Box, as the name implies, is a description of a
system that omits all details of internal structure and
operations. It deals solely with the behaviour that is
visible to its users in terms of stimuli and responses.
Any Black Box response is uniquely determined by the

 4

stimuli history of the system. Stimuli history is the order
in which the stimuli have been received by the Black
Box. The Black Box can be considered as a requirement
statement for the (sub) system.

The State Box gives an intermediate system view by
opening up the Black Box one step. The State Box
(state-machine) consists of a state which is designed
from an analysis of the required stimuli history and
responses from the system and a machine, which
performs some behaviour.

Finally, the Clear Box, opens up the State Box
description of a system one more step and provides a
view of the state and how stimuli are processed. The
internal State Box is replaced with sequential or
concurrent usage of other Black Box sub-systems. These
new Black Boxes are expanded at the next level into
State Box and Clear Box forms.

The expansion of Black Boxes into State and Clear
Boxes produce a Box Structures hierarchy. The State
and Clear boxes may use new Black Boxes, which then
are expanded. A Box Structures hierarchy provides an
effective means of management control in developing
systems. By identifying Black Box sub-systems at
higher levels of the system, only a manageable amount
of state data and processing needs to be handled within
each step. The Black Box sub-systems become well-
defined and independent modules in the overall system.

3.2 Refinement and verification

Stepwise Refinement and Functional Verification (here
abbreviated SRFV) [Mills86b, Linger79] defines a
manner how to construct code from a defined program
function and how to verify its correctness. SRFV
produces an implementation, defined by a hierarchy of
small implementation steps. It supports immediate
verification of the correctness of the steps.

The basic idea in SRFV is implementing a program by
decomposing it into subprograms down to the very
lowest level where program constructs are used. A
function is considered as being composed of smaller
sub-functions. These sub-functions consist of other sub-
functions, and the lowest level sub-function consists of
pure program constructs. The verification of constructs
are discussed in detail in [Linger79]. For verifying the
whole program, the decomposition is reversed to a
composition, where the correctness of each step is
proved.

3.3 Box Structures method

The Box Structures method [Mills88a, Mills86a] is
SRFV applied on the Box Structures concept. It is a
structured method for system development. It provides a

simple but rigourous framework for specification and
design. There exists a twelve step algorithm called the
Box Structures algorithm [Mills88a], which produces a
hierarchy of small design steps that supports the
immediate verification of their correctness.

3.4 SMO

The Box Structures algorithm supports development of a
lot of different types of systems. But when applying Box
Structures for large multi-user systems like
telecommunication systems, adaptations are necessary.
We have encountered the following major problems in
the telecommunication domain:

• Box Structures does not give enough support in the

analysis phases, when going from the mission
domain to the software domain. That is when going
from customer requirements to software
specifications.

• Bos Structures is weak in describing parallel sub-
systems communicating with each other in real time.

• It is difficult to express and completely specify the
large system Black Box in stimuli history with the
description techniques proposed today.

• More support is necessary in the stepwise refinement
and verification procedure of Box Structures. This is
especially true when not defining the Black Box
completely, which is required by the Box Structures
algorithm.

To cope with these problems the SMO method, besides
Box Structures, includes two other description
techniques: sequence charts and SDL (Specification and
Description Language) descriptions. SDL is
standardised by CCITT and described in [CCITT88,
Belina91]. The two description techniques are integrated
in different phases in Box Structures and help us to
solve the problems discussed above. How and why will
be described briefly in the following subsections, while
a more detailed description is found in [Cosmo91].

The last phase of SMO when constructing code from
lowest level Clear Boxes are based on SRFV. This work
has meant adapting the SRFV-ideas to the used
description techniques and to target languages of
telecommunication systems.

3.4.1 Overview

The SMO method consists of five phases (figure 2):

• Analysis,
• Specification,
• High level design,
• Detailed design,
• Implementation.

 5

3.4.2 Analysis

The first step is to identify the system boundary and the
different users of the system. The second step is to
identify the transactions. Transactions are the different
ways in which users want to use the system. This is in
high degree an iterative activity, which continues until
no new transactions can be identified. The result is
documented with sequence charts. The sequence charts,
in this phase of SMO called Sequence Chart
Specification (SCS), will also be a part of the
specification, since they are requirements on different
uses (functionality) of the system.

3.4.3 Specification

The system Black Box is completely defined based on
the analysis results, i.e. the SCS. The Black Box is
defined by identifying stimuli, responses, and the
transitions, mapping stimuli histories into responses.
The system Black Box is verified against the analysis
results.
An SDL specification is made from the system Black
Box and from the sequence charts. No new information,
except user states, should be introduced at this stage.
User states are the states of the system that the user can
perceive. The SDL specification is verified against the
system Black Box and the Sequence Chart Specification.
The SDL specification should correspond to the usage
model, see section 4.

Finally a textual specification of the functionality of the
system is written. The document focuses on a functional
view of the system and is useful for initial
communication with the customer.

The specification of the system includes sequence
charts, a system Black Box, and an SDL specification, in
which the functionality is specified from three different
views. Sequence charts use a function oriented view of
the system, Box Structures uses a stimulus oriented view
and SDL uses a state oriented view. The three views
help specifying the mission correctly, to understand the
system and to get an overview of different aspects of the
functionality. They also make it possible to make an
easy verification of the consistence of the specification.

The different views have different purposes later in the
development as well. The stimuli history in the Box
Structures gives us information of how to design our
system and what stimuli history need to be stored as
data. SDL and sequence charts can give us information
of how to test our system.

3.4.4 High level design

In the high level design phase the top level architecture
is designed and documented. Three main activities
corresponding to the different description techniques are
performed.

A Box Structures design is made from the system Black
Box, by State Box expansion and Clear Box expansion.
Decisions are taken whether to keep the data at this level
in the Box Structures hierarchy or to migrate the data
downwards to a lower level of Black Box sub-systems.

Next sequence charts, that describe the interaction
between the Black Box sub-systems, are made. These
are named sequence chart descriptions. The result is

SDL

static

descriptio n

Sy stem

Black Box ,

Sy stem

State Box , and

Sy stem

Clear Bo x

Black Box 1 ,

State Box 1 ,

Clear Bo x 1

Hig h lev el

Desig n
Detailed

Desig nAnalysis
Sp ecification

Seq uence

chart
SDL

specification

Tex tu al

specification

Sy stem

Black Box

specification

Seq uence

Chart A

En v BB1

BB2

Seq uence

Chart B

En v BB1

BB2

SDL

complete

descriptio n

Missio n

Desig n

Iteratio ns

SDL

complete

descriptio n

Plex-cod e

and

C-co de

Imp lementatio n

Figure 2. The SMO method

 6

verified against the system Clear Box and the sequence
chart specification.

Finally, a static SDL description, that describes the
interfaces between the Black Box sub-systems, is made
from the information kept in the sequence charts and the
system Clear Box. A complete static SDL description is
obtained by the CCITT method, ”Stepwise production
of an SDL specification” [CCITT92]. The SDL
description is verified against the sequence chart and
against the Box Structures design.

All three activities include verifications against each
other and previous phases. These verification activities
will together with the different views used in the
different activities give a base for zero defect design.

3.4.5 Detailed design

In the detailed design phase the same activities as in
high level design are repeated but this time for the Black
Box sub-systems. For each of the sub-systems even
lower level sub-systems (sub-sub-systems) can be
designed. Then detailed design is performed for them,
etc.

When a complete Box Structures description of the
whole system is completed, i.e. no more levels of Black
Boxes exists, a dynamic SDL description is produced.
The behaviour of each Clear Box is then described by an
SDL process behaviour.

3.4.6 Implementation

In this phase the dynamic SDL descriptions of the
lowest level Clear Boxes are refined to code. By using
an algorithm based on SRFV the SDL description is
stepwise transformed to target machine code.

3.4.7 Further adaptations

The development of SMO continues. Work has been and
is being done in several areas. Important issues treated
are: more support in the analysis phase, better
description techniques for stimuli history and more
rigourous verification algorithms.

3.5 Experiences

3.5.1 SMO experiences

The SMO method is used in a 100 man year project
[OS-32] developing a new operating system for a
telephone exchange. Since the project is running at the
moment no formal results or metrics exist. However,
clear improvements have been reported both in quality
and productivity.

The use of SMO is one reason for the good results so
far. But even more important is the organisational
aspects. The project is in many parts organised as a

Cleanroom project, which is a prerequisite for a
successful SRFV-method like SMO, e.g.:

• More time and resources are allocated to the earlier

phases of the project.
• The project is divided into teams according to

Cleanroom. Team responsibility is an important
factor for all teams.

• Verification procedures are performed in regular
intervals by reviews. Each week consists of three
days development, one day of preparation for review
and one day of review.

• No unit testing is to be performed, time is instead
spent in the earlier phases and in verifications.

3.5.2 Experiences with similar techniques

The current project using SMO is not finished, but
experiences from other applications of some of the
techniques indicate that the ideas of SMO are in the
right direction for higher quality software. Some
examples are:

• Experience from Ericsson in Norway indicates, two

to three times increase in quality when using SDL
[Rød]. They measure the amount of faults per line of
code from integration and function tests.

• Russell at Northern Telecom showed that,
”Inspections were two to four times more efficient at
finding errors than either formal designer testing or
system testing. If non-execution errors such as code
optimization and non-compliance to standards are
included, the difference is even larger” [Russel91].
The result is based on data collected from eight
releases of totally 2,5 million lines of code. Fowler
at AT&T have had similar experience [Fowler86].

4. Statistical Usage Testing

Statistical Usage Testing (SUT), [Cobb90, Dyer92,
Mills87, Mills88b, Whitt92a, Whitt92b], is the
certification method described as a part of the
Cleanroom software development method. The goal for
SUT in Cleanroom is not, as in traditional software
development, to find as many faults as possible but to
certify the software reliability. The development made
with the SMO method can be tested with Statistical
Usage Testing.

Software reliability depends not only on how correct the
software is, but also on how it is used. If there is a
failure for a certain state and stimulus, its effect on
reliability will depend on how often this event arises.
This depends on how often the state is reached and how
often the certain stimulus is selected. This reality is
considered by the Statistical Usage Testing and that is
why it can be the basis for certification.

Statistical usage testing consists of two major parts, i.e.
usage modelling, which includes construction of a usage

 7

profile, and reliability estimation. The adaptations to
telecom concern both these parts. This project is being
conducted for the Swedish Telecom to provide them
with a certification method to be used in acceptance
testing when purchasing software systems. The usage
model is a description of how the software is used in
operation, which stimuli are sent in different cases. The
usage profile tells the probabilities for the different
events. The test cases are generated from the usage
profile by random selection according to the software
usage. The certification is performed by analysis of the
failure data collected during testing. The inter-failure
times are collected and applied on a reliability growth
model.

4.1 Usage modelling

The original proposal in Cleanroom for modelling the
usage is a plain Markov model, [Whitt92a, Whitt92b].
We have encountered that this type of model will soon
become too large and complex for large multi-user
systems. The problem has been solved by introducing a
hierarchical Markov model, presented in [Rune91,
Rune92].

4.1.1 Markov model

The usage model is an external description of usage
events and the usage profile defines their probabilistic
relationship. The usage is modelled as a finite state
machine. A simple statistical usage profile example is
shown in figure 3.

A B
fro m/to A B
 A 0.2 0.8

 B 0.9 0.1

a

b

ba

Figure 3. Statistical usage profile.

The test cases are selected from the statistical usage
profile. Starting in an initial user state a transition is

chosen by e.g. the Monte Carlo method2. The stimulus
needed for this transition is recorded. From the new
state a new transition is chosen etc. A test case can be
made up of multiple state transitions. It can be of

2 Monte Carlo is a method for random sampling. It is used for
choosing a transition in the Markov chain. A random decimal
between 0 and 1 is chosen from which the appropriate
transition is determined.

random length, or be finished by ending in a termination
state.

The test cases are randomly selected with respect to their
probability of use and are then a representative subset of
the use cases in operation. They are used to represent the
operation and, like national polls, are the basis for the
prediction of future results.

4.2 State Hierarchy model (SHY)

Based on the conclusion that the existing models are
insufficient, a hierarchical Markov model is developed.
This model copes with the problems encountered in
telecommunication systems. Both the problems
encountered and the possible solution is further
discussed in [Rune91, Rune92]. Besides that this model
is needed for test case generation, it is a mean for easy
communication between users and developers and helps
understanding the software functionality.

4.2.1 SHY structural model

An example SHY model is shown in figure 4. The levels
in the figure can be described as follows:

• The upper level is the Usage Level. It contains one

state, which is the main state for selecting the
underlying user types.

• On the User Type Level (UTL), above the User
Level, a choice between different types or categories
of users can be done. This makes it easier to handle
large systems.

• On the User Level (UL) the individuals of the user
types are shown.

• Each user can use a number of services, which are
described on the Service Level. This implies that the
usage of each user is described as a set of different
services, each of them describing a part of the usage.
When adding new functionality it is easy to add new
services to a user. This supports modularity and
reuse of the usage model parts.

• The Behaviour Level describes the behaviour of the
services. Each service is described by a BL state
machine.

• A stimulus can be refined by using a Sub-Behaviour
Level (SBL) state machine. E.g the stimulus ”digit”
can be chosen on the BL and then an SBL choice
selects the exact digit, 0 to 9.

 8

4.2.2 Hierarchical usage profile

On the Behaviour Level the probabilities for the
transitions are recorded like for the plain Markov chain,
see figure 3. Every state is given a state weight as well,
which reflects the probability for the service in the
actual state to generate next stimulus. The upper level
probabilities are calculated as the weighted sum of the
state weights for the actual states of the underlying
levels. This is expounded in [Rune92].

4.2.3 Test case selection

Test cases are selected by traversing the SHY model, see
figure 4, controlled by random numbers as discussed in
section 4.1.1. First the main state, Usage, is entered from
which a selection of a User Type is done. If e.g. User
Type 2 is selected, there is only one user and this will
hence be drawn on the User Level. One of the services
connected to User 4 is drawn, e.g. Service 2, and then a
transition in its Behaviour Level state machine. The
selected stimulus and its possible influence on other BL-
state machines are added to the test script, or if there is a
Sub-Behaviour Level connected to the stimulus, a
refinement of the stimulus is drawn and it is added to the
test script. Then the probabilities are updated and the
model can be traversed again.

4.3 Certification

By certification means control of the quality fulfilment,
e.g. to certify that a specific reliability has been
obtained. Based on the fact that tests are carried out
from the test cases compiled, it should be possible to
predict the software reliability that can be expected in
actual operation. We have studied the reliability model
proposed in Cleanroom, section 4.3.1, and examined
another type of criterion for determining whether a
product can be accepted or not, the hypothesis testing,
section 4.3.2.

4.3.1 Cleanroom software reliability model

The software reliability model in Cleanroom is as
follows:

 MTTFk = A * B
k

 , with k = 0, 1, 2

This form is supposed to describe the change in MTTF
(Mean Time To Failure) when faults are corrected. The
model is discussed in more detail in [Currit86, Dyer92].
The parameters A and B are estimated from the
collected failure data. This will make it possible from
the equation above to predict future failure occurrences.
From the value of MTTF it is possible to calculate the
reliability of the software. Thus meaning that based on a
required reliability, it is possible to evaluate the software

Usage

User

Type 1

User

Type 2

User 1 User 2 User 3 User 4

Service

1

Service

2

Service

3

User T ype Level

User Level

Service Level

Behaviour Level

Sub-Behaviour Level

Usage Level

Service

1

Service

1

Figure 4. SHY model.

 9

against this requirement.

The Cleanroom model is simple in theory but difficult to
apply in practice. It is very sensitive to variations in
failure data. If some data values in the beginning are
much above the mean value, it clearly overestimates the
quality. Another example of problems arises when some
low data values occur after a while. Then it will take
quite a long time for the estimates to recover. Our
conclusion is that the model is not useful for acceptance
of software but still it can be useful for prediction of
future reliability.

4.3.2 Hypothesis model

As an alternative to the Cleanroom model we have tried
a hypothesis testing model. In [Musa87] p. 201–203 a
method for reliability demonstration testing is described
which is a form of hypothesis testing. A hypothesis is
raised and then the testing aims at giving a basis for
acceptance or rejection of the hypothesis.
The hypothesis is a failure intensity objective
(1/tobjective). The hypothesis is rejected if the objective

is not met with the required probability and accepted if it
is. In the interval between the both, the testing has to
continue.

The reliability demonstration testing is performed by
plotting the measure points in a control chart (see figure
5): failure number (r) towards normalized failure time
(tnorm). The failure time is normalized by multiplying

the failure time by the failure intensity objective.

If the measure points are in the continue region, the
testing is continued. When the measure points are in the
rejection or the acceptance region, the testing is
interrupted and the software is rejected or accepted
respectively.

0

5

10

15

20

25

0 5 10 15

r

tno rm

Reject

Continue

Accept

Figure 5. Control chart for reliability demonstration testing.

The control chart is constructed by drawing the
acceptance and rejection lines. They are based on the
requirements on the probability for acceptance and
rejection of the tested product. How they are calculated
is described in [Musa87].

As a conclusion can be said that the hypothesis testing

model is easy to understand and to use. The hypothesis
testing model gives support for decision on acceptance
at specified levels of certainty.

4.4 Reliability predictions from analysis

The objective with statistical usage testing can be
applied much earlier in the software life cycle. The
certification can be made from failure statistics from for
example dynamic analysis of formal descriptions. This
analysis can be made either on the specification of the
software or of the design of the software during
development.

The objective of the proposed method is to perform the
estimation during some form of analysis during which
failures are detected. The approach is based on that the
usage profile can be input to an analysis tool which
detects certain types of probable dynamic failures. An
example of a tool is SDL Behaviour Analyser (SBA)
presented in [Ek91]. From the failure statistics of the
analysis tool, it will be possible to make a first
prediction of the software reliability when in operation.
This prediction can either be based on that the dynamic
failures are supposed to be representative of the failures
in the product, or a relationship between the dynamic
failures and ”normal” failures has to be determined. The
method and its opportunities are discussed in more detail
in [Wohlin92].

4.5 A method for SUT in telecom

Using SUT on telecom applications can be summed up
in the following method:

• Model the software usage.
• Develop the usage profile.
• Generate test cases.

+ Outside SUT: Execute test cases and collect inter-

failure data.

• Certify the reliability.
• Predict the reliability growth.

5. Cleanroom and dependability

A dependable system is a system on which the user can
trust and the basis for trust is the absence of failures. It
must be better to design a software system with zero
defects than introducing fault tolerant software or
having redundancy in the system. In particular, this must
be the case when it does not cost more than normal
development to apply the Cleanroom Software
Engineering methodology. Cleanroom is not a guarantee
for zero defect software, but it will increase the quality.
Since it is not possible to actually prove that the
software is not free from defects, it is always wise to
combine Cleanroom with some form of fault tolerance.
The fault tolerance technique to use must be a function

 10

of the requirements of the system and the actual fault
content. Thus meaning that it may be possible to apply a
less complex fault tolerance strategy when applying
Cleanroom than otherwise.

Cleanroom produces dependable software by turning
software development into an engineering practice
instead of looking at software development as a private
art form for hackers. A large software system with
”smart” local solutions will never became a dependable
and maintainable system.

The engineering approach, as in Cleanroom, includes
several techniques and it is the sound application of the
total concept that makes the software dependable. The
problems of software failures in operations will not be
solved with one technique, e.g. object-orientation, or by
applying more sophisticated software tools. The only
way to dependable computing systems is to stay in
intellectual control by applying sound engineering
disciplines throughout the life-time of the software.

The application of sound engineering disciplines is
accepted in almost all other fields of engineering. Who
would drive across a bridge which was constructed
based on ad hoc techniques similar to the ones applied
in software development? Bridge building has, however,
been around for quite a long time and it took a long time
to get to where bridge building is today. This can,
however, not be an excuse for not applying engineering
techniques in software development. The society today
depends heavily on the software, which makes us
extremely vulnerable to the failures. Thus, the private art
of software development must be abandoned and turned
into an engineering activity.

Cleanroom turns software development into an
engineering discipline, by the techniques presented
above. Hence, Cleanroom will help in the development
of dependable systems in the future.

6. Current work

Q-Labs has today a number of on-going Cleanroom
activities:

6.1 QCCC at Q-Labs

Q-Labs Cleanroom Competency Centre (QCCC) has
been established this year at E-P Telecom Q-Labs, Ideon
Research Park in Lund. QCCC has at this date eight
members from Q-Labs, including associates from the
University of Lund. The goal with QCCC is to:

• collect experience and knowledge from our

commercial Cleanroom projects and in that way
incrementally increase the Cleanroom competency in
QCCC.

• offer adaptations of the Cleanroom methodology to
different environments and applications.

• offer education or seminars on different levels, both
for technical personnel and management.

• make further development of the Cleanroom
methodology.

• have an intense cooperation and communication
with SET – one of the companies responsible for the
development of Cleanroom.

6.2 Industrial projects

Q-Labs has a number of industrial projects active on
adaptations of the different methods in Cleanroom. Two
of them (SMO and SUT) are described in section 3 and
4 of this paper. The SMO method developed for
Ellemtel is used in a 100 man year project [OS-32] that
is reporting improvements both in quality and
productivity. The SUT project, performed for the
Swedish Telecom, is in its second phase. The first phase
consisted mainly of adaptation of the method to the field
of telecommunications. The second phase includes in
particular a practical application of the proposed
methods for acceptance of software products, but also a
further refinement of the methods.

6.3 Case study

An internal Cleanroom case study has just been finished.
A number of topics have been under study and
evaluation, for example the new Cleanroom Process
Manual, the use of all Cleanroom methods integrated in
one single project and the team approach. We have no
metrics at this date on the productivity and quality of the
software produced but the indications and expectations
are positive. The results from the case study has shown
that it requires a lot of discipline to do it the ”right” way
and that training is essential to be able to make efficient
use of the Cleanroom methods.

7. Conclusions

Cleanroom Software Engineering with its adaptations to
the problems encountered in telecommunication systems
will be one way to provide dependable systems in the
future. The engineering approach emphasized by the
techniques within in Cleanroom is a necessity for
software development. The most important ones are:

• The organizational aspects.
• Incremental, stepwise refinement with verification.
• Certification based on the usage of the software.

The paper has presented two major adaptations of
Cleanroom to cope with problems encountered in large
real-time multi-user systems, i.e. a development method
and a method for software certification.

 11

7.1 Conclusions development method

The ideas of stepwise refinement and verification are
one of the bases for developing zero defect software.
Cleanroom emphasises this by using the Box Structures
and Stepwise Refinement and Functional Verification
(SRFV). The SMO method has shown that it is possible
to successfully adapt these ideas to the field of
telecommunication.

SMO provides a true specification technique, with
emphasis put on the external behaviour. The three
different views in the specification are new in system
specification. They give us a powerful tool to specify
the system correctly.

The method supports stepwise refinement and
verification from specification to code by integrating
three different description techniques in a SRFV
manner.

The possible gains in quality and productivity by
Cleanroom is indicated by the project using SMO. The
project also shows that the use of Cleanroom
organisation ideas are as important as the development
method.

7.2 Conclusions certification method

It can be concluded the statistical usage testing provides
an opportunity to certify the reliability of the software.
Statistical quality control of software is possible using
SUT, i.e. an objective measure for acceptance of
software products can be obtained.

The method includes a hierarchical Markov model to
describe the usage of a telecommunication system. This
model overcomes some of the problems encountered
when using a plain Markov chain. The developed model
is easy to understand and its division into levels lets the
user concentrate on one aspect at the time. It is easy to
add new parts to the model, which can be useful when a
system is extended. The model is an important part in
being able to apply SUT to the telecommunications
field.

The estimation of software reliability through applying
software reliability growth models is difficult. A study
has shown that it is difficult to simply apply a model and
get a reliable estimate. The solution to the problem is to
apply the methods sensible, evaluate the result and
possibly combine the objective estimates with the
subjective judgements based on experience. The
proposal in the method is to apply a hypothesis
acceptance criterion and then to apply the software
reliability model proposed in Cleanroom to get a
prediction of the future reliability growth.

A method for applying SUT in telecommunication has
been formulated. Some work remains to be done, but the

results and the method can be used and ought to be used.
The method ought to be applied to some real projects to
be evaluated, improved and adapted to the practical
needs. The method is believed to be mature enough to
give valuable results already in the first real project.

8. References

[Adams84] Adams, E. N., ”Optimizing Preventive

Service of Software Products”, IBM Journal of
Research and Development, January 1984, pp. 2-
14.

[Belina91] Belina, F., Hogrefe, D. and Sarma, A. ”SDL
with Applications from Protocol Specifications”,
Prentice-Hall, UK, 1991.

[CCITT88] CCITT, ”Recommendation Z.100:
Specification and Description Language, SDL”,
Blue book, Volume X.1, 1988.

[CCITT92] CCITT, ”SDL Methodology Guidelines”,
Appendix I to Z.100, 1992.

[Cobb90] Cobb, R. H. and Mills, H. D., ”Engineering
Software Under Statistical Quality Control”,
IEEE Software, November 1990, pp. 44-54.

[Cosmo91] Cosmo, H., Sixtensson, A. and Johansson,
E., ”SMO – A Stepwise Refinement and
Verification Method for Software Systems”, In
”SDL '91: Evolving Methods”, Editors: O.
Færgemand and R. Reed, pp 137-147, North-
Holland, The Netherlands, 1991.

[Currit86] Currit, P. A., Dyer, M. and Mills, H. D.,
”Certifying the Reliability of Software”, IEEE
Transactions on Software Engineering, Vol. SE-
12, No. 1, 1986, pp. 3-11.

[[Dyer92] Dyer, M., ”The Cleanroom Approach to
Quality Software Development”, John Wiley &
Sons, 1992.

[Ek91] Ek, A. and Ellsberger, J., ”A Dynamic Analysis
Tool for SDL”, In ”SDL '91: Evolving Methods”,
Editors: O. Færgemand and Ri Reed, pp 119-134,
North-Holland, The Netherlands, 1991.

[Fagan76] Fagan, M. E., ”Design and Code Inspections
to Reduce Errors in Program Development,”,
IBM Systems Journal, No. 3, 1976, pp 182-211.

[Fowler86] Fowler, P. J., ”In-process Inspections of
Workproducts at AT&T.”, AT&T Technical
Journal, March/April 1986, pp. 106.

[Linger79] Linger, R. C., Mills, H. D. and Witt, B. I.,
”Structured Programming Theory and Practice”,
Addison-Wesley Publishing Company, 1979.

[Mills86a] Mills, H. D., Linger, R. C. and Hevner, A. R.
”Principles of Information Systems Analysis and
Design”, Academic Press Inc. 1986.

[Mills86b] Mills, H. D., ”Structured Programming:
Retrospect and Prospect”, IEEE Software,
Novemver 1986, pp. 58-66.

[Mills87] Mills, H. D., Dyer, M. and Linger, R. C.,
”Cleanroom Software Engineering”, IEEE
Software, September 1987, pp. 19-24.

[Mills88a] Mills, H. D., ”Stepwise Refinement and
Verification in Box-structured Systems.”, IEEE
Computer, June 1988, pp. 23-36.

 12

[Mills88b] Mills, H. D. and Poore, J. H., ”Bringing
Software Under Statistical Quality Control”,
Quality Progress, November 1988, pp. 52-55.

[Musa87] Musa, J. D., Iannino, A. and Okumoto, K.,
”Software Reliability: Measurement, Prediction,
Application”, McGraw-Hill, New York, 1987.

[Musa90] Musa, J. D. and Everett, W. W., ”Software
Reliability Engineering: Technology for the
1990s”, IEEE Software, November 1990, pp. 36-
43.

[NASA90] ”The Cleanroom Case Study in the Software
Engineering Laboratory – SEL 90-002”,
Software Engineering Laboratory, 1990.

[OS-32] Presentation material from the OS-32 project,
Ellemtel, Sweden, 1992.

[Rune91] Runeson, P., ”Statistical Usage Testing for
Telecommunication Systems”, Dept. of
Communication Systems, Lund, Sweden, Report
No. CODEN: LUTEDX(TETS-5134)/1-
49/(1991) & Local 9, 1991, Master thesis.

[Rune92] Runeson, P. and Wohlin, C., ”Usage
Modelling: The Basis for Statistical Quality
Control”, Proceedings 10th Annual Software
Reliability Symposium, Denver, Colorado, USA,
pp. 77-84, 1992.

[Russel91] Russell, G. W., ”Experience with Inspection
in Ultralarge-scale Developments.”, IEEE
Software, Jan 1991, pp. 25-31.

[Rød90] Rød, T., ”Erfaringer - SDL og måltall”, EEN,
900829.

[Whitt92a] Whittaker, J. A., ”Markov Chain Techniques
for Software Testing and Reliability Analysis”,
Dept. of Computer Science, University of
Tennessee, Knoxville, USA, 1992, Ph.D.
Dissertation.

[Whitt92b] Whittaker, J. A. and Poore, J. H., ”Statistical
Testing for Cleanroom Software Engineering”,
Proceedings 25th Annual Hawaii International
Conference on System Sciences, pp. 428-436,
1992.

[Wohlin92] Wohlin, C. and Runeson, P., ”A Method
Proposal for Early Software Reliability
Estimations”, To appear in Proceedings 3rd
International Symposium on Software Reliability
Engineering, Raleigh, North Carolina, USA,
October 1992.

