

C. Wohlin, H. Petersson, A. Aurum, F. Shull and M. Ciolkowski, "Software Inspection
Benchmarking - A Qualitative and Quantitative Comparative Opportunity",

Proceedings 8th IEEE International Symposium on Software Metrics, pp. 118-127,
Ottawa, Canada, June 2002.

Abstract
Software inspections are commonly used throughout the

software industry, but there are still open questions about
the relationship between inspection processes and
inspection effectiveness. For example, which techniques
work best in various environments? Are requirements
specifications inspections and code inspections different in
terms of effectiveness? What is the effectiveness in
inspections for different group sizes? Benchmarking
provides an opportunity to address such issues. This paper
discusses how benchmarking may be applied for software
inspections. The discussion is illustrated with an empirical
study. It is shown how the data can be used to plan and
manage software inspections. It is concluded that software
inspections are well suited for benchmarking and that
software practitioners as well as researchers can learn
valuable lessons.

1. Introduction

Software defects are undesired consequences of the
software development process. The objective of software
inspections is to improve the quality of the product by
analyzing the product, detecting defects and removing them
before the product is released. It has been documented that
software inspection reduces software development costs,
increases the quality of software, and improves the

productivity as well as the quality of decision making
process for management [1, 2, 3]. Despite the documented
benefits of inspection, the advantages of inspections are not
well perceived by management. A number of social as well
as technical factors influence the effectiveness of
inspections [4] and comparative studies are necessary to
isolate and understand those factors. One approach to doing
this is the use of benchmarking, which is discussed in this
paper.

It is important for managers and developers to be able to
determine if and when an inspection process would be
profitable in their environment. However, inspections are
labor intensive, and the return from this process is not
immediate and obvious. Therefore, there exists a perception
that inspections cost more than they are worth. This means
that it is valuable to use benchmarking to compare and
evaluate different ways of doing inspections to know how
to apply them in a cost effective way. The benefit of
software inspections in different phases of the software life
cycle can also be compared. Thus, inspections are
particularly suited for benchmarking. This is because they
are possible to characterize and describe and hence are
comparable. From a research perspective, benchmarking
should allow researchers to make more comprehensive
studies and improve our understanding of how software
inspections ought to be conducted. It is important to note
that benchmarking is a continuous improvement process

Software Inspection Benchmarking -

A Qualitative and Quantitative Comparative Opportunity

Claes Wohlin
Dept. of Software Engineering and

Computer Science
Blekinge Institute of Technology

Box 520, SE-372 25 Ronneby
Sweden

E-mail: Claes.Wohlin@bth.se

Aybuke Aurum
School of Information Systems,
Technology and Management

University of New South Wales
 Sydney NSW 2052

Australia
E-mail: aybuke@unsw.edu.au

Håkan Petersson
Dept. of Communication Syst.

Lund University
Box 118

SE-221 00 Lund
Sweden

E-mail: hakanp@tele-
com.lth.se

Forrest Shull

Fraunhofer USA Center for Experi-
mental Software

Engineering Maryland
University of Maryland

4321 Hartwick Road, Suite 500
College Park, MD 20742-3290

USA
E-mail: fshull@fraunhofer.org

Marcus Ciolkowski

University of Kaiserslautern
 Software Engineering Group

Postfach 3049
67653 Kaiserslautern

Germany
E-mail:

ciolkows@informatik.uni-kl.de

rather than a competitive comparison.
This paper discusses the feasibility of software

inspection benchmarking. The paper is outlined as follows.
Section 2 describes some of the related work, both in
benchmarking in general and software engineering in
particular. In Section 3, the opportunities to use
benchmarking in software inspections are discussed. An
illustration of how benchmarking may be applied in
software inspections is presented in Section 4. Finally, in
Section 5 a discussion and some conclusions are presented.

2. Related work

2.1. Benchmarking in general

Benchmarking is a widely used business practice and
has been accepted as a key component for organizations to
search for improvement in quality, competitive position or
market share. According to a survey in 1992, 31% of US
companies were regularly benchmarking their products and
services. Another survey in UK (1996) revealed that 85% of
the business was using benchmarking practices [5]. In
Japan, benchmarking is called “dantotsu”, which means,
“striving to be the best of the best” [6]. Here, we would like
to define benchmarking of processes as an activity that
strives to be the best of the best. Thus, both qualitative and
quantitative comparisons with this objective are viewed
here as being benchmarking.

The literature describes several types of benchmarks [7,
5, 8]. Sole and Bist, in [7], point out that the level of
benchmarking sets the degree of the challenge from a slight
improvement in the development process to a radical
change in the process. Benchmarking may be divided into
different types depending on whom the comparison is made
with and the objective of the comparison. Some common
types of benchmarking include:
• comparison within the same organizations (internal

benchmarking),

• comparison with external organizations (external bench-
marking),

• comparison with competitors (industry benchmarking),

• identification of best practices (generic benchmarking),

• comparison of discrete work processes and systems
(process benchmarking),

• comparison of performance attributes e.g. price, time to
market (performance benchmarking), and

• addressing strategic issues (strategic benchmarking).

2.2. Benchmarking in software development

Benchmarking provides opportunities for comparison,
for example, compilers may be compared by compiling the
same program on several different compilers and by
logging compilation time and errors.

Benchmarking in software development is perceived as

an assessment method, which is concerned with the
collection of quantitative data on topics such as
effectiveness, schedules and costs [9, 10]. It allows the
comparison between organizational processes with industry
best practices. It also helps managers to determine whether
a significant improvement is required to maintain a
particular business [10]. Here, the term benchmarking is
used both for qualitative and quantitative comparisons as
long as the main objective of benchmarking is fulfilled.
Thus, a characterization of several processes in qualitative
terms would qualify as benchmarking if the objective is to
improve these processes. Informally, the following
definition of benchmarking is used in this paper. Process
benchmarking is the comparison of similar processes in
different contexts, and it implies multiple points of
comparison, e.g. two data points is not a benchmarking, and
it requires a representative sample in terms of, for example,
organizations and applications.

Several assessment tools for software benchmarking
have also been developed. Maxwell and Forselius [11]
developed an Experience database that consists of 206
business software projects from 26 companies in Finland.
This database allows managers to compare their projects
with the existing projects from the database.

2.3. Benchmarking in software inspection

To the best of our knowledge little work has been done
in the area of benchmarking software inspection. One of the
few examples from the literature is where Jones [9] argues
that function points provide useful metrics on two
components of software quality: (a) potential defects, which
is the total number of defects found in a work product, and
(b) defect removal effectiveness levels, which is the
percentage of software defect removed prior to delivery. He
reports that in the US the average for potential defects is
about five function points, and overall defect removal
effectiveness is about 82%. According to one recent study,
code inspection reduces life cycle defect detection costs by
39%, and design inspection reduces life cycle defect
detection costs by 44% [12].

3. Inspection benchmarking

3.1. Introduction

To enable comparison between inspections, it is
necessary to:
• Characterize each inspection process to be compared,

including application, environment and people factors
(qualitative benchmarking),

• Use comparable measures across inspections (quantita-
tive benchmarking).

It is possible to perform a qualitative benchmarking.
Proper characterization also yields the possibility of
comparing inspection processes. The addition of measures

means that it is possible to quantitatively compare
inspection processes. The measures to compare include
effectiveness (how large a proportion of the defects did we
find?), efficiency (how many defects did we find over a
specific period of time? This is equivalent to defects found
per time unit.), and the number of reviewers (how many
reviewers do we need to achieve a certain level of
effectiveness or efficiency?). It is also interesting to know
how severe certain defects are to fully be able to determine
effectiveness and efficiency in software inspections.

3.2. Characterization

A key aspect of benchmarking is the characterization,
which can either be used as stand-alone qualitative
benchmarking or as a part of a quantitative benchmarking,
where the characterization can also be used to support
identifying the correct quantitative comparisons. The
characterization is important to allow for a comparison
across different data sets and organizations. Moreover, it is
important to enable evaluation of the potential differences
observed in data sets, since it provides a baseline for,
hopefully, understanding cause and effect relationships.

The characterization includes three perspectives and
five aspects that are characterized, see Table 1. The
characterization is based on the authors’ experience from
working with software inspections. The first perspective is
the normal working situation, which should capture
characteristics related to the working environment and the
normal applications developed. The second perspective is
related to the resources in the benchmark, i.e. the people
participating in the benchmarking and the applied
inspection process. The third perspective is basically a
characterization of the unique aspects of the benchmark.

From an environmental point of view, it is important to
document the type of inspection that is studied as well as
the normal notation used in that phase. The type of
application normally developed is important. This should
not only include the application domain, and also some
additional information, for example, whether it is a soft- or
hard real-time system that is normally developed.

Next, the people participating in inspections have to be
characterized. This includes their native language and
experience, both in terms of the application domain and the
environment. The inspection process has to be captured. It
is important to collect as much relevant information as
possible about the process. This includes the type of
inspection (e.g. Fagan, or walkthrough), roles used in the
inspection, techniques used for individual defect detection,
if any, data collection procedure (for example comments are
sent by e-mail or collected during a meeting), who is
participating (both as reviewers and in any prospective
meeting) and whether any tool support is used in the
inspections. It is also essential to document how protocols
are written and the procedure for re-work. Processes as
applied may be different from processes as documented,

meaning that ethnographic techniques may be appropriate.
Finally, it is important to document aspects that are

related to the actual benchmarking and the artefact used in
the benchmarking process. This includes the type of
artefact, notation used and the number of defects in the
artefact used for benchmarking. Preferably, the artefact is
used as developed for the benchmark. In some cases this
may be impossible, and it may be necessary to translate it. If
this is the case, it has to be documented that it has been
translated and also to which language. Since, the objective
is to have a seeded artefact (with a known number of
defects) for benchmarking, it is important to document the
experience of the people in the benchmark application (if
different from the normal application). To increase the
value of the benchmark, it is important to document the
difference in the inspection situation in comparison with
how inspections normally are conducted. In other words,
the distance from the normal artefacts and the normal
inspection situation has to be captured. This is preferably
done in a survey after having done the benchmark
inspection. The distance should include as many aspects as
possible, including application type, language, notation,
complexity of the review artefact and also general opinions
among developers. The developers could, for example,
answer questions such as: Is this inspection representative?
Is it easier or more difficult? Have you found more, less or
an equal number of defects?

3.3. Quantitative measures

To obtain comparable measures regarding, for example,
effectiveness in software inspections, it is necessary to list
both the defects that were and were not discovered, as this
is needed in order to determine the effectiveness. To
achieve this, three opportunities exist:
• A seeded document, i.e. an artefact, is used experimen-

tally to evaluate the inspection process. The document
may be either from a generic or a company-specific
domain. The advantage of having a document from a
generic domain is that it makes comparison easier. The
disadvantage is that the document may not give a good
picture of how documents normally look in a specific
organization. The company specific document may on
the other hand make comparison more difficult.

• Defect tracking, i.e. the organization has such a good
defect tracking system that it is possible to determine
when a defect was introduced and found, and even when
it could have been found. The latter means that the
defect was present, but it was missed in the inspection.
This type of in-depth tracking would allow for deter-
mining the number of defects actually present in a spe-
cific document, although it will take some time until
almost all defects present at a specific inspection have
been located.

• Defect estimation methods, i.e. by applying defect esti-
mation methods after an inspection, it is possible to get
a value for the total number of defects in the inspection.
If this type of estimate is trusted then it is possible to
determine the effectiveness of inspection. This type of
defect estimation methods includes capture-recapture
and curve-fitting methods [13].

Defect tracking is difficult and hence many
organizations are unable to perform tracking according to
the above description. Also few companies are using defect
estimation methods and hence the focus here is on
benchmarking using one or several seeded artefacts. Thus,
seeded documents are probably the best option.

The seeded documents may be from any application
domain. In case of a standardized artefact, it is preferable to
find an area, which is familiar to people, however few
developers have actually developed systems in this area.
Examples of systems may include an elevator or a
reservation system for taxis. Most people have an intuitive
feeling for these types of systems, although most
developers have not developed systems in these application
domains. Systems, for example, in the telecommunication
domain are probably not suited since some of the software
is hard to understand unless you have worked in the area. It
also gives a major advantage to those who have worked
with these systems. This makes comparison and hence
benchmarking difficult.

Another aspect of the artefacts is the phase they

represent. As a first step a requirements specification and
code inspections could be benchmarked, since several
experiments have been conducted on reviewing
requirements specifications and code (see Table 1), and
hence baseline data already exist. In addition to this the
approach may be extended to other artefacts in the future.
The requirements review is especially useful when the
specification is written in natural language and hence
readable for most developers, i.e. they do not need to have
any knowledge in a specific high-level language. Code is
also readable for developers even if they are not experts in
that specific programming language, but the use of Java, C
or C++ allows more developers to be familiar with the
language.

3.4. Benchmarking goal

The goal is to be able to compare different software
inspection processes. Given the characterization and the
standardized artefacts, it is possible to compare, for
example, if a specific inspection process is better or worse
than another.

Some key concerns regarding benchmarking are
scalability, thresholds, simplicity and atypical situations.
Scalability should not be a major problem, as long as the
inspections scheduled on real projects are of limited size.
Since normal recommendations on the length of an
inspection meeting are on the order of 2 to 4 hours it is

Table 1. Characterization of software inspection.

Normal working situation Resources in the benchmark
Unique aspects of
the benchmark

Environment Application People Process Benchmarking

Phase Domain Native language Inspection type Artefact type

Normal notation Experience in
application

Roles Artefact notation

Experience in
environment

Individual defect
detection tech-
nique, e.g. reading
technique

English or trans-
lated

Meeting Number of known
defects

Tool support Experience in
benchmark appli-
cation

Protocol Distance from nor-
mal artefacts

Procedure for re-
work

feasible to benchmark a realistic approximation of the
process. Scalability must also be addressed by using
documents representative of what is normally seen at the
organization, with respect to size and defect density. Then,
the objective is not to set quality thresholds on the
documents but to provide feedback on effectiveness,
efficiency and expectations on these two aspects in terms of
group size. Simplicity is also very important because in
order to make a benchmark useful, it should be possible to
replicate it without having to have a number of experts
present. The characterization scheme supports simplicity.
Finally, it is often heard about software projects that they are
so different from each other that it is not possible to compare
them. It may be true that projects are very different, but it
should still be possible to compare certain aspects of
software projects, for example, software inspections. The
differences and similarities should be captured in the
characterization and hence atypical inspections should be
accounted for in the analysis. Atypical inspections may be
important to learn from, but they should not be part of the
normal benchmarking data, since it is not anticipated that the
same situation will occur again.

4. Illustration

To show the opportunities with benchmarking in
software inspections, an empirical study is presented. The
study is based on publicly available data, and the main
objective is to illustrate how software inspection data may be
used to evaluate several important questions regarding
software inspections. It must be noted that unfortunately
characterizations of the different contexts for the individual
data sets are not available and hence the actual empirical
results have to be used with caution. Moreover, it is only
possible to compare the effectiveness in the inspections,
since for most studies there is no information available on
time spent and defect severity.

In particular, the results are based on data that was not
collected for benchmarking so the actual results are not the
main issue here. The key issue is to illustrate how this type
of information can be used for benchmarking purposes, if an
appropriate characterization is conducted.

The study may be viewed as an attempt to carry out
meta-analysis, which means that results from different
studies are combined to generate new knowledge. It is
acknowledged in the software engineering literature that
meta-analysis is needed [14, 15, 16]. In [14], it is stressed
that meta-analysis based on raw data is most appropriate.
This is the case in our study. Miller [15] discusses when data
from experiments can be safely combined. The paper
discusses defect detection experiments, which includes both
testing techniques and different reading techniques. Hayes
[16] takes a similar approach and compares five published
studies. A major difference in our study is that the meta-
analysis is based on more than 30 data sets and that the
analysis is done based on the raw data as mentioned, [14], as
one of the most appropriate methods for performing meta-
analysis.

4.1. Data

The data in Table 2 is collected from literature and it is
actual data from companies or university environments.

The data has primarily been collected as part of formal
experiments [17]. For the sake of this illustration, let us
imagine that the data is collected from different companies.
This is done for illustrative purposes to show the feasibility
and opportunity of doing benchmarking in software
inspections.

In total, there are 21 data sets from the requirements
phase and 10 data sets from code inspections. From the data,
all virtual groups are created to obtain as much information
as possible from each data set. This means, for example, that
35 “inspection groups” are created with three reviewers from
data sets with seven reviewers in total. For the data available,
groups of sizes 1-7 have been created to illustrate the
opportunities. It should be noted that in the long run, the aim
should be to base the benchmark only on real groups to
ensure that the conclusions are based on groups that are
similar to the ones found in industry.

The disadvantage of virtual groups is that there is a high
dependency between the groups, but on the other hand all
data sets are treated the same and since the main concern is
comparison, it should not be critical for the outcome. It is
here worth noting than a preliminary simulation has been
conducted to evaluate the use of virtual groups. The outcome
indicates that the mean values are approximately the same
for virtual groups and real groups. However, the variation
among real groups is larger, which is reasonable given the
dependence between virtual groups.

A random selection of all combinations is used so that all
data sets get a similar weight, otherwise data sets with more
reviewers would dominate over the others. It is now possible
to create a “database” with experiences from these
companies.

The characterization of the data sets is shown in Table 2.
For simplicity the data is only characterized regarding the
development phase (requirements, code) and reading
technique (ad hoc, checklist, perspective-based reading
[18]). However, due to the use of virtual groups, the
evaluation is not really done of perspective-based reading,
since this type of reading technique requires different roles
in a group. This is not fulfilled when using virtual groups.
Thus, the technique is hereafter referred to as active reading
technique, since in all roles the individuals are active, for
example, with creating use cases or test cases.

The data provides opportunities to make controlled
comparisons to evaluate if, for example inspection rates vary
by the development phase or reading technique. Using the
data, it is possible to answer, for example, the following
benchmark questions:
1. Are there any differences in terms of effectiveness

between requirements specification inspections and code
inspections?

2. Are there any differences in terms of effectiveness
between the different reading techniques?

3. How many inspectors does one need to exceed, for exam-
ple, 60% effectiveness with a certain probability, for
example, 70%?

4. Another opportunity is to assume that company No. 19
and 29 are not in the database, but they would like to
compare their inspections with the ones in the database.
Thus, it is possible to use the data from the other compa-
nies and compare this with these to two companies for
requirements and code inspections respectively.

These types of questions and studies can be conducted
as more and more data becomes available.

4.1. Analysis

The four questions above are addressed to illustrate how
software inspection benchmarking can be used to study a
number of issues of interest to software management in
their effort to improve the software development process. It
is here assumed that all data sets used for comparisons
come from “similar” companies, i.e. the characterization

Table 2. Classification of Data Sets.

No. No. of reviewers Doc. Type Reading Tech.
Reference to

source

1 8 Artif. Reqa AdH. Freimut, 1997
2 6 Artif. Req AdH. Freimut, 1997
3 6 Artif. Req AdH. Freimut, 1997
4 6 Artif. Req AdH. Freimut, 1997
5 6 Artif. Req Chkl Unpublishedb

6 7 Req AdH. Freimut, 1997
7 6 Req AdH. Freimut, 1997
8 6 Req AdH. Freimut, 1997
9 6 Req AdH. Freimut, 1997

10ac 8 Artif. Req PBR Regnell 1999
10b 7 Artif. Req PBR Regnell 1999
11a 8 Artif. Req PBR Regnell 1999
11b 7 Artif. Req PBR Regnell 1999
12 6 Artif. Req PBR Freimut, 1997
13 6 Artif. Req PBR Freimut, 1997
14 6 Req PBR Freimut, 1997
15 6 Req PBR Freimut, 1997
16 7 Req PBR Freimut, 1997
17 6 Req PBR Freimut, 1997
18 8 Artif. Req PBR Freimut, 1997
19 6 Artif. Req PBR Freimut, 1997
20 8 Code PBR Freimut, 1997
21 7 Code PBR Freimut, 1997
22 8 Code PBR Freimut, 1997
23 7 Code PBR Freimut, 1997
24 8 Code PBR Freimut, 1997
25 7 Code PBR Freimut, 1997
26 5 Code Chkl Runeson, 1998
27 5 Code Chkl Runeson, 1998
28 5 Code Chkl Runeson, 1998
29 5 Code Chkl Runeson, 1998

a. Artificial requirements specifications, i.e. they have been developed for
the experimental studies and they are not “real” specifications. The arti-
ficial requirements specifications are treated together with the require-
ments specifications coming from real software projects.

b. Used in [19] though the data set is not published.

c. The data sets 10 and 11 have been divided into two parts (denoted by “a”
and “b” respectively) by random to make them more comparable in size
(in terms of number of reviewers) to the other studies.

shows that it is reasonable to compare the companies.
1. Effectiveness in requirements specification and code

inspections respectively

To the left in Figure 1, the effectiveness in software
inspections is shown for different types of documents.
The box plots indicate the median value as a line in the
box. The box extends from the 25th percentile to the 75th
percentile, and the whiskers are determined based on
these quartiles and the length of the box multiplied with
1.5. The box plots are shown for 1 to 4 reviewers with
requirements specifications inspections to the left and
code inspections to the right for the different cases. The
focus is on 1 to 4 reviewers since the number of combina-
tions is very few for higher number of reviewer, and the
results would depend too much on single data points
rather than representing a more general outcome.

From the box plots, it seems obvious that the differ-
ences in terms of effectiveness between requirements
specifications inspections and code inspections are
minor. To test that there is no significant difference (level
0.05), the non-parametric Mann-Whitney test was
applied. The outcome was, as expected, that no signifi-
cant difference between the two inspection types could
be identified. From a benchmarking perspective, this
means that we may conclude that we can expect that our
effectiveness for different types (or at least for require-
ments specification inspections and code inspections) of
inspections is approximately the same. This information
is valuable when planning different types of inspections.
In particular, it implies, for example, that any experience
regarding effectiveness for code inspections could proba-
bly be transferred to inspections of requirements specifi-
cations.

2. Effectiveness in inspections using different reading tech-
niques

To the right in Figure 1, the box plots for the effec-
tiveness for different reading techniques is shown. Once
again, the plots provide information for 1 to 4 reviewers
with the plots in the following order: ad hoc, checklists
and active reading technique. From the box plots, it
seems as though checklists may be more effective than
the other two techniques. To test this, both a non-para-
metric Kruskal-Wallis test and a parametric ANOVA test
were applied. Both tests showed that there was indeed a
statistically significant (level 0.05) difference between
some of the reading techniques. A more in-depth analysis
showed that the difference was between checklists and
the two other reading techniques. From a benchmarking
perspective, this tells us that if we have good checklists
they ought to outperform ad hoc inspections and the
active reading technique. The latter is fairly surprising
and from a research perspective. The result should
encourage us to further investigate the reasons for this
outcome and also to further develop other techniques so
that more effective inspections can be obtained.

3. Team size versus effectiveness

In Table 3, the probability for a certain effectiveness
given a certain team size is shown. The table is built from
the available data sets, and hence reflect a view across the
data sets presented in Table 2. For example, the probabil-
ity for having a higher effectiveness than 50% with 3
reviewers is 0.57 (see shaded cell). Thus, the columns
represent the group size, the rows the effectiveness and
the cells in the table the probability for exceeding the
effectiveness with the given group size.

Figure 1. Effectiveness in inspections for different types of documents (left) and for different reading
techniques (right). The documents are from the left: requirements specification and code. The reading

techniques are from the left: ad hoc, checklists and active reading technique.

1 2 3 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Document Type
E

ff
e

ct
iv

e
n

e
ss

Reviewers

1 2 3 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Inspection Technique

E
ff

e
ct

iv
e

n
e

ss

Reviewers

The third questions stated in the introduction of Sec-
tion 4 may now be answered. If asking for an effective-
ness level above 0.6 with a probability of 0.7 means that
at least 6 reviewers are needed (see black cell with white
text). This table provides an opportunity to understand
how to plan the number of reviewers to achieve a certain
effectiveness with a certain probability. This type of
information is very valuable for anyone planning and
managing software inspections. In the long run, a table
like the one in Table 3 ought to be constructed by organi-

zations that want to improve their ability of planning
software inspections.

4. New company scenario

It is here assumed that data sets 19 and 29 are not part
of the experience base, and the box plots in Figure 2 are
created without these two data sets. In particular, it is
assumed that the companies that we compare with are a
subset of the companies in the experience base and that
they were selected based on the characterization. Thus,
the box plots may be seen as the benchmarking experi-
ence base that new companies may use for planning and
comparing their own software inspection process. The

Table 3. Teams size versus effectiveness.

1 2 3 4 5 6 7a

0.1 0.87 0.97 0.99 1.00 1.00 1.00 1.00

0.2 0.64 0.90 0.96 0.99 1.00 1.00 1.00

0.3 0.37 0.75 0.89 0.93 0.97 1.00 1.00

0.4 0.17 0.57 0.77 0.84 0.87 0.91 1.00

0.5 0.10 0.35 0.57 0.74 0.81 0.86 0.95

0.6 0.06 0.22 0.41 0.57 0.65 0.77 0.71

0.7 0.03 0.10 0.23 0.39 0.43 0.55 0.50

0.8 0.03 0.06 0.15 0.24 0.22 0.27 0.27

0.9 0.01 0.02 0.04 0.08 0.11 0.15 0.05

1.0 0.00 0.00 0.00 0.01 0.03 0.04 0.00

a. The lower effectiveness for seven reviewers than for six
reviewers is due to the data sets and random effects. For the
higher number of reviewers, we have fewer data sets and it
should also be noted that the actual combinations making up
the table is selected by random, and hence this effect occurs.

Figure 2. New company scenario for requirements specifications inspections (left) and code
inspections (right).

1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Requirement Document
E

ffe
ct

iv
en

es
s

Group Size

1 2 3 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Code Documents

E
ffe

ct
iv

en
es

s

Group Size

circles in the box plots represent the two new data sets
(or companies from a scenario perspective).

Company No. 19 could use the left diagram in
Figure 2 to know what to anticipate when performing
inspections. It is possible to see the median value for
requirements specification inspections as well as the dif-
ferent quartiles and whiskers. Thus, the company has a
good picture of the industry standard for effectiveness of
requirements specifications inspections. After having
conducted a controlled inspections at the company, it is
possible to plot how this company is performing. This is
illustrated with the circles in the box plot. It can be seen
that company No. 19 in this case performed below
median for all group sizes. The difference between how
close the circle is to the median depends on the individu-
als that are added as we increase the group size. It may
be particularly interesting to actually study the perfor-
mance of individuals (although personal integrity has to
be taken into account) and hence use this information to
put together inspection teams.

To the right in Figure 2, a similar diagram is shown
for code inspections. In this case, it is worth noting that
company No. 29 is performing better than the industry
standard.

In summary, the illustration above shows examples of
questions that can be addressed if using benchmarking in
software inspections. The actual figures are not the main
issue. The illustration is based on the assumption that the
data sets are indeed comparable, i.e. the characterizations of
the data sets are similar. Anyhow, the figures indicate the
level of effectiveness that we can anticipate for different
reading techniques, different types of documents and
different group sizes.

5. Conclusions

Software inspection benchmarking opens a number of
interesting opportunities. The need for empirical studies
and experimentation in software engineering is well known.
Software inspection is an area where experimentation really
is possible. This includes both industry and universities. By
agreeing on a number of standardized artefacts or use of
company specific artefacts and a characterization schema, it
should be possible to a large number of experiments world-
wide and hence it should be possible to progress fairly
quickly in this area.

Software inspection benchmarking is interesting for
both universities and industry. Industry may perform
benchmarking as discussed above. Universities may
perform experiments allowing for more data to be collected
regarding inspections, which would enable us to better
understand different aspects of software inspections more
fully. This becomes particularly valuable if the universities
use the same documents as are used in the benchmarking in

industry. For example, universities should be able to include
experiments in courses where different reading techniques
are compared.

The future work includes a worldwide initiative through
the International Software Engineering Research Network
(ISERN) to conduct a series of studies to build a software
inspections benchmarking experience base. The objective is
to provide support to companies along the lines discussed in
the illustration of how benchmarking can be used, and to
provide researchers with more comprehensive results to
build their future efforts on.

6. Acknowledgment

The authors would like to thank Prof. Vic Basili, Prof.
Dieter Rombach and Dr. Martin Höst for valuable
discussions on the subject of software inspection
benchmarking, which have contributed to the ideas
presented in this paper.

7. References

[1] M. E. Fagan, “Advances in Software Inspection”, IEEE
Transaction on Software Engineering, 12(7), July., 1986.

[2] F. A. Ackerman, L. S. Buchwald and F. H. Lewisky, “Soft-
ware Inspections: An Effective Verification Process”, IEEE
Software, May 1989, pp. 31-36.

[3] T. Gilb and D. Graham, Software Inspection, Addison Wesley
Publishing Company, ISBN 0-201-63181-4, 1993.

[4] C. Sauer, D. R. Jeffrey, L. Land and P. Yetton, “The Effective-
ness of Software Development Technical Reviews: A Behav-
iorally Motivated Program of Research”, IEEE Transactions
on Software Engineering, 26(1), 1998, pp. 1-14.

[5] P. K. Ahmed and M. Rafiq, “Integrated Benchmarking: A
Holistic Examination of Selected Techniques for Benchmark-
ing Analysis”, Benchmarking for Quality & Technology, 5(3),
1998, pp. 225-242.

[6] L. M. Corbett, “Benchmarking Manufacturing Performance
in Australia and New Zealand”, Benchmarking for Quality
Management & Technology, 5(4), 1998, pp. 271-282.

[7] T. D. Sole and G. Bist, “Benchmarking in Technical Informa-
tion”, IEEE Transactions on Professional Communication,
38(2), 1995, pp. 77-82.

[8] D. Longbottom,“Benchmarking in the UK: An Empirical
Study of Practitioners and Academics”. Benchmarking: An
International Journal. 7(2), 2000, pp. 98-117.

[9] C. Jones, “Software Challenges”, IEEE Computer, 28(10),
1995, pp. 102-103.

[10] A. Beitz and I. Wieczorek, “Applying Benchmarking to Learn
from Best Practices”, Proceedings 2nd International Confer-
ence on Product Focused Software Process Improvement,
Oulu, Finland, 2000.

[11] K. D. Maxwell and P. Forselius, “Benchmarking Software
Development Productivity”, IEEE Software, January/Febru-
ary 2000, pp. 80-88.

[12] L. Briand, K. El Emam, O. Laitenberger and T. Fussbroich,
“Using Simulation to Build Inspection Efficiency Bench-
marks for Development Process”, Proceedings of 1998 Inter-
national Conference on Software Engineering, pp. 340-349.

[13] C. Wohlin and P. Runeson, “Defect Content Estimations from
Review Data”, Proceedings International Conference on
Engineering, pp. 400-409, Kyoto, Japan, 1998.

[14] L. M. Pickard, B. A. Kitchenham, and P. W. Jones, “Combin-
ing Empirical Results in Software Engineering”, Information
and Software Technology, 40, 1998, pp. 811-821.

[15] J. Miller, “Can Results from Software Engineering Experi-
ments be Safely Combined?”, Proceedings IEEE Interna-
tional Software Metrics Symposium, pp. 152-158, Boca

Raton, Florida, USA, 1999.

[16] W. Hayes, “Research Synthesis in Software Engineering: A
Case for Meta-Analysis”, Proceedings IEEE International
Software Metrics Symposium, pp. 143-151, Boca Raton,
Florida, USA, 1999,

[17] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell
and A. Wesslén, Experimentation in Software Engineering -
An Introduction, Kluwer Academic Publishers, Boston, USA,
2000.

[18] V. R. Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull,
S. Sørumgård and M. V. Zelkowitz, “The Empirical Investi-
gation of Perspective-Based Reading”, Empirical Software
Engineering: An International Journal, 1(2), 1996, pp. 133-
164.

[19] B. Regnell, P. Runeson and T. Thelin, “Are the Per-
spectives Really Different? - Further Experimentation
on Scenario-Based Reading of Requirements”, Empiri-
cal Software Engineering: An International Journal, 5(4),
2000, pp. 331-356.

