

B. Lennselius, C. Wohlin and C. Vrana, "Software Metrics: Motivation and Fault
Content Estimation", Microprocessors and Microsystems,

Vol. 11, No. 7, pp. 365-375, 1987.

Software metrics: fault
content estimation and

software process control

To overcome the prevailing problems of error management, missed deadlines
and overspent budgets, commercial software developers will have to

embrace the concept of 'measuring' projects. Bo lennselius, Claes Wohlin
and Clirad Vrana* review the developing field of software metrics and present

some preliminary findings

The paper shows how software metrics can be used to plan
and control software projects. Software metflcs will be
essential if the software industry is to continue growing and
developing complex systems. The only way to increase
knowledge of the software development and maintenance
processes and the final product is to measure them and
use the measurements in models for estimating their future
behaviour. The emphasis of this paper is on complexity
metrics and reliability models, and especially on their use
for fault content estimation and control of the develop-
ment and maintenance processes. Empirical results and
guidelines of how to use complexity metrics and reliability
models are presented.

software development complexity metrics reliability models

Despite a great deal of effort, the software industry still
suffers from problems such as error-prone products,
projects missing their target dates and projects a long way
over budget. It is therefore necessary to make the software
development processes - - requirement specification,
design, fault correction during development, corrective
maintenance, enhancement etc. - - more effective
throughout the software life cycle. The aim must be to
reduce the total cost of developing software products.

To decrease the life-cycle cost it is necessary to
consider the residual fault content of the product and its
impact on reliability and cost. It is therefore necessary to
estimate the fault content, and especially the number of
faults that affect the operational behaviour of the product.

The problems of the software industry originate from a
lack of appropriate techniques and methods as well as
poor management, both at the highest levels and at the
project level, with regard to the complex systems to be
developed. A lot of money and effort has been spent
trying to solve these problems. Traditionally, technical
issues such as better languages and tools have been
emphasized; these are necessary for the improvement of
software development and maintenance. It is also most
important, however, to develop and adopt techniques to
improve project management and understanding of the
different software development processes; in this way we
can

• improve planning and control of the project (e.g.
obtain information about expected results)

• compare different methods objectively and try to
improve them.

DeMarco 1 states 'You can't control, what you can't
measure.' The authors totally agree with this. Metrics and
measurement are essential to achieve meaningful control
over the software process throughout the life cycle.
Consequently, we need a set of different metrics giving
information about the product and how the project is
proceeding. The product is assumed to consist of the
documentation produced throughout the life cycle, and
not just the code. In this paper we use the definition of
software metrics given by DeMarcol:

• 'A metric is a measurable indication of some quantita-
tive aspect of a system.'

Department of Communication Systems, Lund Institute of Technology, In this context the word 'system' refers to either the
Box 118, S-221 00Lund, Sweden product developed or the process of development
*Telelogic AB, Baltzarsgatan 22, S-211 36 MalmO, Sweden
This project is supported by Telelogic AB and the Swedish Tele- throughout the life cycle. This brings us to the following
communication Administration definitions used by Conte 2.

0141-9331/87/07365-11 $03.00 © 1987 Butterworth & Co. (Publishers) Ltd

Vol 11 No 7 September 1987 365

• 'Process metrics quantify attributes of the development
process and of the development environment' (e.g.
the cost of development).

• 'Product metrics are measures of the software product'
(e.g. the number of pages of design documents).

Consequently, metrics can be related to product 'qualities',
to the handling of the product throughout the software
life cycle and indirectly to methods, tools and actors
(i.e. organizations and humans that participate in the
development and maintenance of the product).

In our work we emphasize the use of metrics to
improve planning and control throughout the software
life cycle. This has led to the concept of 'management by
objectives' (Figure 1). This concept requires the following
three conditions to be met.

• There must be measures on qualities.
• The relationships between these measures and other

quantities (e.g. resources, planning and economy)
must be known.

• To use the results for planning and control there must
be some feedback from developers and users.

The first two of these conditions call for fully defined
methods during specification, design, coding, testing etc.

Metrics are the theoretical bases for software engineer-
ing. The list of areas and occasions where different metrics
are needed is very long. We have already mentioned
planning and control of software projects. Some other
typical examples are contracts or responsibilities, require-
ment specifications, guarantees, cost estimation, the
choice of methods, the choice of basic techniques,
quality assurance, tests etc. Metrics can also be used to
evaluate projects and products, answering such questions
as 'Why did our project cost three times more than pre-
dicted?' and 'Why does our product contain ten times
more faults than predicted?'

Thus metrics have an important purpose in building up
a 'corporate memory' which can be used, for example, in
the planning and control of future projects. By building up
a'corporate memory' and by using models to explain the
behaviour of the software development process we will
increase our knowledge about the process, learn some-
thing about the inevitable consequences of our applied
methods (se~ for example the section on the quality
constraint mofel, below) and be able to improve the
process. The Jse of software metrics to improve the
software development process is further discussed by
Basili 3.

Management (by objectives)

Documentation - -
-~! Software L ' ~ J Software ! ~ developme at I'~J~" FI development

~ Documentatior

I

Software development

o,orma, ioo

Figure 1. Management by objectives

Today, software metrics are prone to certain limita-
tions. First, it should be made clear that the use of metric~
can only be useful if one is comparing like with like. For
example, the most familiar software measure is the
number of lines of code; there is no general agreement
about what constitutes a line of code, however.

Second, the same confusion abounds in the definitions
of different qualities 4. Everyone agrees, for example, that
'user friendliness' is a very important quality attribute of a
software product, but we have no common definition of
what user friendliness is. The conclusion must be that we
need to have generally agreed definitions on metrics and
qualities.

Third, we have to find a structure among the different
qualities and see how this structure harmonizes with
other models and ways of looking at things connected to
the 'software product' concept. In the next section such a
structure is presented.

Finally, we have to remember that the metrics and
models cannot replace the decision-making process of
the managers. As Boehm s states, 'The models are just
there to help, not to make your management decisions
for you.'

CRITERION STRUCTURE

In accordance with the system and life-cycle models fora
system 6, a system is defined by its documentation (by
definition the system does not exist if there is no
adequate documentation). All handling of a system is
defined as a transformation of these documents. From the
abstract system (the source system) are derived (copied,
constructed or manufactured) the operative systems.

The various economical and quality aspects can (and
should) be structured in a similar manner. Even if the
structure is not completely orthogonal it makes the
derivation and study of metrics and their applications
considerably easier. A structure of qualities is presented in
Figure 2. The structure is compatible with the product
concept applied to software products within the Swedish
Telecommunication Administration and other companies,
and imitates the way in which mechanical products are
traditionally handled. Vrana 7 shows how qualities impact

~ i Management aspects [

Figure 2. Criterion structure

366 Microprocessors and Microsystems

on a system based on an 'hierarchical modular' structure.
In systems built in this way almost all qualities are
improved.

As pointed out above, there are many qualities that can
be of interest. Which are to be considered important
depends on the application and the constraints on that
specific application. This area has not been fully
investigated. However, some metrics and qualities have,
due to their importance, been used for some time, and
have also been studied in greater theoretical depth than
others. To this category belongs reliability (and models of
it) and complexity metrics (and different qualities derived
from it). This paper will concentrate on complexity
metrics and reliability models, especially for fault content
estimations.

The difference between reliability and fault content
should be observed. A product may have a number of
faults, but if they are located in paths that are seldom
executed, the product is considered to be reliable. It
should be noted that the faults considered by reliability
models are those that contribute to the reliability under
the present conditions, and not necessarily to the total
fault content.

During development it is possible to estimate the fault
content from complexity metrics and reliability models.
The latter estimation is possible since, in many of the
models, one of the parameters is the number of faults.
The models applicable during development are highly
dependent on the environment and techniques used,
since the behaviour of the product is dependent on, for
example, the testing strategies applied. This means that
the estimate during development is only an indication of
possible problems during operation; this limitation is due
to the problem of imitating the operation phase. During
operation, however, it is possible to use reliability models
to estimate the reliability and the fault content. The fault
content that is estimated at this time in the life cycle is the
one that the user faces, which means that these are the
faults that really contribute to the total life-cycle cost.

COMPLEXITY METRICS

Complexity metrics can be used to measure how
complex (or difficult) a software product is. Historically,
complexity metrics have been based on source code, but
if complexity metrics are to be used as a tool for
management, it is necessary to measure before the
coding phase. This can be done if the product is docu-
mented with a well defined and standardized description
technique during the different phases of the software life
cycle. An example of a well defined description language
is SDL, the specification and description language
standardized by CCITT 8.

Description complexity (Cd) is a measure of how
complex a description document is; this is dependent on
the software structure. Different parts of the software
structure affect the description complexity differently.
Consequently, the description complexity can be divided
into complexity originating from size (Cs), complexity
originating from control structure (Ccs), interdependencies
of different descriptions (modules of a software system)
(Cco) and so on, such that

c~ = f(cs, Ccs, Coo) (1)

There is no metric which covers all these aspects of

description complexity for a software product today.
Because of this it is very important to use different metrics
to measure different attributes. With other factors (see
below), these attributes affect the human handling of the
descriptions (the product) throughout the software life
cycle. Assuming that the influence from other factors is
equal for all modules within the same product, the
following relations are obtained between the complexity
and the number of faults in the product (FAULT) on the
one hand and the complexity and the personnel effort
(EFF) needed for the development of the product on the
other hand.

FAULT ~ kl Czl + k2CZ~ + k3CcZg + . . . (2)

EFF ~ k4C z4 + ksCZ~ + k6CcZ~ + . . . (3)

where ki and z i are constants based on description
language, programming language, methodology and tools
(see below). Complexity measurements can for example
be used in the following applications

• estimation of the initial number of faults (before the
test) in the product

• identification of error-prone modules (see below)
• estimation of personnel effort for the following soft-

ware development processes (this is not discussed
further here, but developing a complexity model for
effort estimation is very similar to developing a model
for estimation of the number of faults)

• identification of methods and tools which need to
be improved

• guidelines for the structuring of a system.

Empirical study

In this section we summarize an empirical study per-
formed by Lennselius 9 of which the primary goal was to
find out if metrics derived from SDL descriptions can be
used as a tool for planning and controlling software
projects. The relationships between the metrics and the
number of faults and between the metrics and personnel
effort during the coding phase were analysed in the study.
In the following discussion we consider only the results
obtained for metrics versus number of faults.

The results are based mainly on a study of 15 software
modules belonging to a telecommunications switching
system. The size of the modules is between one kiloline
and seven kilolines of code. The system is described with
SDL-like graphs. For the project (referred to as project A
throughout this paper), failure data from the test phase
were collected for each module.

In the study the results of project A were compared
with the results of prior studies by Vrana I° and by Wohlin 1 i.
In these studies the relation between the number of faults
and the metrics of the SDL-like descriptions in the Axe
switching system were investigated for 20 and 28
modules respectively (in the following text these projects
are called project B and project C respectively).

Some candidate SDL-based metrics for the investigation
are presented below.

C(G). This metric is a modification of McCabe's cyclo-
matic complexity 12. C(G) is a measure of the control
structure of an SDL graph and is proposed by Lennselius 13.
C(G) is calculated as the number of branches plus the
number of input symbols.

Vol 11 No 7 September "1987 367

NOS. As a measure of the size the number of SDL symbols
is counted for each module.

MNOS, MC(G). In the systems under investigation a
module consists of several 'functions' (analogous with
blocks and processes in SDL descriptions). If two or more
functions are regarded as 'similar' (see definition in
Lennselius 9) the metrics NOS and C(G) are modified
according to the number of 'similar functions'. Our
assumption is that the programmerwill become more and
more familiar with these 'similar functions' and that we
have to reduce their effect on complexity (this modifica-
tion was only made in project A).

INP. As a measure of the dependencies between the
modules of a system we count (for each module) the
number of unique signals which are sent to the module
from other modules.

For project A the SDL-based metrics were compared with
the following code-based metrics: the number of lines of
source code (abbreviated to LOC), including comments
and the declare sector; the number of executable lines of
code (EXE); and Halstead's program volume (V) TM. For
projects B and C the SDL-based measures were only
compared with the number of lines of code because the
measurements for these projects were done manually.

The above-mentioned metrics are primarily measures
of the software structure and are not 'true' measures of the
different parts of the description complexity. However, as
stated above, the software structure influences the com-
plexity and the above-mentioned metrics are considered
below as simple measures of the different parts of the
description complexity.

One of the main applications of complexity metrics is
to identify error-prone modules. A simple way to define
such modules is by using the standard deviation as a rule.
An error-prone module is defined as an 'error outlier' if
it lies at least one standard deviation above the mean of
the error distribution of the project. For any measure,
those modules which lie more than one standard
deviation above the mean are referred to as 'metric
outliers'. (This technique is similar to the validation
technique used by Kafural s.) We may now ask the follow-
ing two questions of interest. Are metric outliers good
indicators of error outliers? Are metrics derived from SDL
descriptions better, worse or as good as LOC in pointing
out the error outliers?

From projects A, B and C we found 11 modules out of
63 which were error outliers (within the respective
project). In Table 1, each column represents an error
outlier and each row corresponds to a complexity metric.
An 'X' appears in a table entry if the error outlier denoted
bythe column in which the entry appears is also an outlier
of the metric corresponding to the row in which the entry
appears. The column labelled 'nonoutliers' shows how

Table 1. Metric outliers v e r s u s error outliers for
projects A, B and C

Metric Error outliers Total Non-
1 2 3 4 5 6 7 8 9 1011 outliers outliers

LOC X X X X X X 6 3
NOS X X X X X X X 7 3
C(G) X X X X X X X 7 4
INP X X X X X X X X X X 10 2

many modules were outliers of the complexity metric but
were not error outliers. From Table 1 it is not a simple
matter to choose the 'best metric', due to their similar
results and to the small number of examined modules,
but we can state that the metrics derived from SDL
descriptions are as good indicators of error outliers as is
the frequently used measure LOC.

By using regression analysis the dependencies (correla-
tion) between the number of faults and each complexity
metric were studied. The result was that the SDL-based
measures had a higher or at least the same correlation with
the number of faults as the code-based metrics. (The
correlation matrix for project A is presented in Table 2.)
This indicates that the SDL-based metrics can be used
early in the software life cycle to estimate the number of
faults.

For project A the best prediction is obtained by assum-
ing a nonlinear relation between the complexity metrics
and the number of faults (see Figure 3 and Table 3).
Projects B and C also indicated an unlinear relation 1°,11.
For none of the projects has it been possible to statistically
determine that the relation is nonlinear or linear, due to
the small number of modules in each project.

This study shows a possible way of using complexity
measurements throughout the software life cycle. Before
the coding phase we can use complexity metrics based
on a well defined description language (SDL, for example)
to estimate the number of faults and to make an early
identification of error-prone modules. This may be
reflected in management policies, quality assurance
activities and testing effort.

The indication of nonlinearity between the number of
faults and the complexity metrics points out the necessity
of pinpointing the error-prone modules early in the life
cycle. By doing this we can, for example, decide if the
system should be redesigned 9. Modules with extremely
high complexity values will significantly increase the cost
of a software product 1°. After the coding phase we can
use code-based complexity metrics to make new estima-
tions of the fault content. In particular we will study
modules whose code-based estimates differ from the
earlier estimates. Such a difference makes possible the
identification of anomalous modules.

Development and use of complexity models

Many empirical studies (e.g. Yu 16) have been performed
in order to study the impact of complexity (measured
from source code) on software development processes.
No complexity metric has been shown to be superior
generally (i.e. independent of development environment
and product category). It is therefore very important to
state that a result obtained in one environment cannot be
transformed directly to another environment. The price
paid for violating this rule is misleading or erroneus
estimations. Consequently, we have to make complexity
studies in our own development environment. In the text
that follows we will give a brief description of the steps
necessary in such a study and some aspects of the use of a
complexity model.

First, we have to choose a set of candidate metrics for
the study. The criterion must be to choose metrics which
measure different at t r ibutes- complexities originating
from size, flow of control, data flow etc. Second, we have
to collect data (number of faults, effort etc.) from the

368 Microprocessors and Microsystems

Table 2. Correlation matrix for project A

Metric INP NOS C(G) MNOS MC(G) V EXE LOG

Faults 0.95 0.88 0.90 0.93
LOC 0.87 0.93 0.94 0.93
EXE 0.91 0.90 0.91 0.94
V 0.94 0.91 0.92 0.94
MC(G) 0.93 0.93 0.96 0.99
MNOS 0.93 0.94 0.95 1.00
C(G) 0.91 0.99 1.00 - -
NOS 0.90 1.00 - -
INP 1.00 - -

0.92 0.94 0.91 0.87
0.93 0.96 0.97 1.00
0.93 0.99 1.00 - -
0.94 1.00 - -
1.00

Table 3. Analysis of the nonlinear relation between the number of faults and the complexity measures for project A

z V z LOC z IN pz MNOS z MC(G)Z

r 2 MRE r 2 MRE r 2 MRE r 2 MRE r 2 MRE

1.0 0.87 0.31 0.75 0.33 0.89 0.30 0.85 0.57 0.84 0.40
1.5 0.91 0.26 0.77 0.28 0.91 0.29 0.89 0.29 0.87 0.27
2.0 0.91 0.26 0.76 0.27 0.90 0.29 0.89 0.26 0.85 0.28

r 2 is the coefficient of determination
MRE is the mean-magnitude relatk, e error between real and estimated values

projects we want to analyse. Data collection has to be
done very carefully and is very time consuming without
automated tools. Third, we have to identify the metrics
that correlate with the fault content of our product. For
example, we may find that McCabe's cyclomatic com-
plexity correlates well with the number of faults and that
we do not get significantly improved estimates if we
consider this metric together with metrics which measure
other complexity factors; in this case we choose the
cyclomatic complexity metric for our model. Finally, we

- - x

8

6

4 x / x 6 x
z - Xx

x x

2 -X
- X

X
I I I I I I I I I I I I I I
2 4 6 8 10 12 14 16 18 20 22 24 26 28

v/lO ooo

Figure 3. Estimated number of faults ~ = m + aV l"s (solid
line) and actual number of faults (marked by crosses); V is
program volume TM

have to determine the relation between the chosen com-
plexity metric(s) and the number of faults (or amount of
effort), i.e. determine the values of the constants k i and zi.
We now obtain a complexity model.

When a complexity model has been developed, it is
used and evaluated on new projects (products). This
leads us to question whether it is enough fora new project
to measure simply the chosen metric (or metrics) of our
model; the authors believe not. We still have to measure a
set of metrics which consider different aspects of the
complexity. The reason for this is as follows.

• We want to evaluate and improve our model con-
tinually. By using several metrics we have the possi-
bility of identifying changes in our development
environment and altering the complexity model
according to these changes.

• By measuring several complexity factors it is possible to
identify modules in the analysed product which differ
from the 'normal' structure of a module (a very small
module with a very complicated flow of control, for
example). In other words we can identify anomalous
modules. This information is needed in the estimation
process, to identify irregularities in our estimations, for
example. The information is also needed in the evalua-
tion of the project.

As mentioned above, there are other factors s, 17 besides
those already discussed that affect the personnel effort
needed as well as the correctness of the product. Some of
the factors are

• product category (administrative systems, operating
systems, telecommunication switching systems etc.)
and large differences in product size

• performance and memory constraints
• the skill of the project members and their experience

of the application area

Vol 77 No 7 September 1987 369

• time schedule of the project
• amount of reused design documentation and source

code
• changes in the specification or the hardware during

development
• use of configuration control systems and quality

assurance systems or methods.

When we use complexity models we have to monitor (or
measure) these factors in order to detect large differences
between the project we want to analyse and the projects
from which we have derived the complexity model. We
need to identify those factors which significantly change
the validity of the complexity model. By doing this we can
recalibrate the model (the constants) according to the
changes between the project which we analyse and the
'typical' project of our complexity model. The issue of
how to recalibrate complexity models according to
changes in the development environment will be further
studied by the authors.

The method outlined above may seem very ambitious,
but if we want to stay in control we need to understand
the different software development processes and their
impact on the qualities of the product and other
quantities (e.g. personnel effort needed). As well as the
development and use of a complexity model, the
method outlined will build up a 'corporate memory' (or
part thereof). If we do not monitor and measure we have
little chance of increasing the efficiency of the software
development processes in a cost-effective way.

RELIABILITY

One of the most important aspects of product quality is
the reliability of the software. Software reliability can be
defined as the probability that the software does what it is
supposed to do throughout a prespecified time. Software
reliability is dependent on the number of faults that are
introduced when developing the program, since software
does not wear out in the way that hardware does. Soft-
ware is often modified, improved and added to through-
out its lifetime, however. The relationship between
reliability and the number of faults is affected by the use
of the product and the location, size and type of faults are
located. As discussed above, software reliability models
can be used to estimate the number of faults, but we have
to be aware of what fault content they estimate during
different phases in the software life cycle.

To obtain a good estimate of the reliability, factors such
as the number of faults remaining and the time between
failures must be determined. By this means we should be
able to predict how failures will occur in the future. An
early estimate of the number of faults can be obtained
through complexity metrics (see above). This estimate
can be used as input to software reliability models, to
obtain better estimates of the reliability factors mentioned
above as the project proceeds. The results from the relia-
bility models are improved through collection of failure
data. This makes it possible to refine the estimates of the
model parameters. By predicting failure occurrences it is
possible, for example, to predict a suitable time to release
the software product and to determine the allocation of
resources, so that a product which meets the quality
constraints can be delivered on the target date.

Need to compare software reliability models

A realistic prediction of software failure occurrences is
vital if we wish to be able to draw any conclusions from it.
It is therefore necessary that software reliability models
well suited to the situation (i.e. the environment and the
application) are used. A software reliability model is used
to predict the behaviour of the product but, especially
during development, its behaviour is dependent on the
environment and techniques used, e.g. testing strategies.
This means that the models have to be reasonable with
regard to development environment, tools, application,
test environment etc. A thorough investigation, classifica-
tion and comparison of existing models as well as a study
of our own environment is needed to identify possible
models for our products.

A number of software reliability models exist; some
examples are presented in Jelinski 18, Goe119, Schneide-
wind 2°, Littlewood 21 and Musa 22. But do we really need
this diversity of models?

To answer this question we have to compare models
and study how they relate to each other. First of all we
have to study the models and select those that are best
suited for our environment, techniques and applications
according to the assumptions made by the models.
Having done this we are probably left with either a
number of models or none at all. If we are left with none
we have to take an approach similar to the one described
below (under 'Environment-adapted models') and
presented in Wohlin 23, i.e. to develop a model which is
tailored to the environment and the techniques used. Let
us suppose that we still have at least two possible models.

An easy (but time-consuming and expensive) method
is to use multimodelling, i.e. to use all models and then
choose the best one at the end. The criterion for choosing
a model is hard to decide. Should we take the worst case,
or the model which makes the management happy, or
what? Even if a couple of models give the same result, can
we be sure that it is the right result? There is a possibility
that the result is the same because the models are similar
to each other, and this result might not be accurate. The
authors suggest another approach, which we call the pre-
evaluation approach. We wish to stress the need to
compare and evaluate the software reliability models
before we use them in a given environment and organiza-
tion 24'25. Our suggestion is that, instead of spending
money buying expensive program packages for various
models and then running them, effort should be put into
investigation and classification. Having understood the
models, tools can be selected for some of these models
which are best suited to the individual application. Some
classifications already exist, but they are mostly concerned
with classifying the models according to the approach
taken in developing them. This information is of little
interest to the user of the models. The user is, in most
cases, not especially interested in the mathematical
background but rather in the usefulness of the results.

We have to compare the information we get from the
models. If one model gives us all the information we
need, why use the others? A thorough study of the
available models, the information obtained from them
and its accuracy has to be conducted. We have to
catalogue the models and find out where they overlap.
Once this is done we can use the results as guidelines on
which model(s) to choose depending on the environ-
ment, applications and information needed. The model

370 Microprocessors and Microsystems

has first of all to be realistic with respect to the product's
behaviour, which is highly influenced by the environment
both during development and operation. The behaviour
of the product is influenced by, for example, the testing
strategies during development and the use of the product
during operation. When the model is considered to be
realistic and applicable, then the next step is to consider
another important aspect when comparing models - - the
accuracy of estimates obtained from the models 26.

It is no use applying a more sophisticated model than is
necessary. If we need a lot of information, then we can
use more than one model, but we have to be sure that the
models complement each other, otherwise effort will
simply be wasted. It is the authors' conviction that an
extensive investigation of all available software reliability
models must be carried out.

Classification of software reliability models based
on the failure process studied

The best classification of software reliability models from
the user's point of view would be based on the applica-
tion area and information obtained from the models. The
classification based on the failure process studied,
however, is important because the models must be
compared based on the failure process studied. According
to Goe127, the software reliability models can be placed in
four classes. Goel defines the classes as follows.

"Times between failures' models. The general approach for
this class of models is to assume that the time between
failure number (i - I) and failure number (i) fol low a
probability distribution, whose parameters depend on
the number of faults remaining. One of the first and most
commonly used models is the Jelinski-Moranda de-
eutrophication model 18.

"Failure count' models. This class of models assumes that
the number of detected failures in an interval follows a
stochastic process with a t ime-dependent discrete or
continuous failure rate. A well known model from this
class is the GoeI-Okumoto nonhomogeneous Poisson
process modeP 9.

'Fault seeding' models. In this class we 'seed' a known
number of faults into our product; when testing the
product we find both seeded and unseeded faults. If we
look at the proportion of seeded faults found compared
to the number of unseeded faults found, we can estimate
the total number of faults in the software product. The
estimate is used to assess software reliability. The most
widely spread model of this class is probably Mills'
seeding model 28.

"Input domain based" models. The basic approach in this
class is to generate a set of test cases from a distribution.
The distribution should be chosen so that it is represen-
tative of the operation of the software product. Models
in this class estimate the reliability from the outcome of
the test cases. A model in this class is presented in
Nelson 29.

Most models so far developed fall into the first two of
these classes; the authors feel that this is no coincidence.
These two classes are time dependent, which gives us an

opportunity to estimate the forthcoming software failure
occurrences. The latter two classes only give a stationary
value, e.g. the number of faults in the software product or
the reliability, but we obtain no information on howthat
number will decrease. The different classes of models will
be suitable at different times during the project and for
different applications, but this problem is not considered
here.

The possibilities for comparing models within the
classes are many, but the main problem is how to
compare models when they study different failure
processes. To compare models from different classes
some common parameters have to be found; this is
especially important for the two time-dependent classes,
i.e. the first two listed above. It is well known from proba-
bility theory and queueing theory 3° that there is a relation-
ship between the distribution of times between two
consecutive events and the distribution of numbers of
events in an interval. Thus, if this relationship could be
used to compare one model from the 'times between
failures' and one from the 'failure count' class, then it
would be possible to use these two models as reference
models for their classes. The reference models would
work as a bridge between the classes, i.e. by comparing all
models within a class with the reference model in that
class, the models will be compared with the models from
the other classes too. This bridge can be constructed
between the time-dependent classes by comparing two
frequently referenced models.

Comparison of two models

The two models which will be compared are only briefly
described here. For more information on them, see
Jelinski 18, GoeP 9 and Goe127.

Jelinski-Moranda de-eutrophication model (J-M model).
This is one of the first models and probably one of the
most commonly used for assessing software reliability.
The model assumes that the time between failures
follows an exponential distribution with a failure rate that
is proportional to the number of remaining faults. By
applyingthe maximum likelihood method, when we have
observed a number of times between failures, we can
estimate the initial fault content and the proportionality
factor.

Goel-Okumoto nonhomogeneous Poisson process
model (G-O model). This model was proposed after a
study of actual failure data from many systems. Using
various assumptions it was concluded that the number of
faults detected by time t follows a Poissonian distribution
with a t ime-dependent mean value

m(t) = N[1 - exp(-z t)] (4)

where N is the expected number of faults to be detected
and z is the proportionality factor.

The two models above study two different failure pro-
cesses. The J-M model is derived from the times between
occurrences and the G-O model is developed from the
number of occurrences in a given time interval. The
relationship between the times between occurrences and
the number of events in an interval is used to compare the
two models presented above. The relationship can be

Vol 11 No 7 September 1987 371

used for developing the distribution of the number of
detected faults over time t for the J-M model; since this is
known for the G-O model, it is possible to compare
probability distributions, mean values, variances etc. for
the two models.

The result is that the number of failure occurrences
over time t for the J-M model follows a binomial distribu-
tion, with exactly the same time-dependent mean value
as the G-O model. This means that we should compare a
Poissonian and a binomial distribution with the same
mean value. We also observe that the variances for these
distributions are well known and can be compared with
each other. Thus we can link the two time-dependent
model classes.

The models have been compared thoroughly by
Wohlin 31. They are first compared analytically: mean
values, variances and confidence intervals are considered,
taking both time-dependent and asymptotic values. Then
the two models are compared with collected failure data
from two large software projects. The results are as one
could reasonably expect. It is possible to build different
realizations of a system, and the number of errors made
when developing the system will consequently vary. This
means that we cannot initially be certain which of these
realizations we have in fact developed. Therefore the
G-O model is suitable in the early stages of development
because it treats the initial number of faults as a stochastic
variable. When almost all faults have been removed,
however, we know which of the realizations we have built
and consequently the J-M model is the best one to use;
this is because the J-M model treats the initial number of
faults as a constant.

We have shown that it is possible to compare different
models with each other and to see how they fit collected
failure data. It is by no means certain that the same
models are always the best - - it is more likely that we will
need different models during different phases of the soft-
ware life cycle, e.g. for different test strategies during a
project. This is backed up by the fact that the G-O and
J-M models are suitable at different times.

Environment-adapted models

The two software reliability models compared in the
previous section have been used successfully in earlier
telecommunication projects I°. The models were adopted,
adjusted and successfully applied to several projects
during the operational phase of the system. They were
then applied to projects during the functional test stage;
unfortunately they did not work.

The problem during the functional test phase is that
some of the assumptions made for the models are far
from valid 32. There are some assumptions we have to
accept and some we do not. One assumption made by
almost all models, which we probably have to accept, is
that either the times between failures are independent of
each other or the number of faults detected during
nonoverlapping intervals are independent of each other.
This independence is usually not present, but experience
shows that this violation does not significantly affect the
results. Without assuming independence in probability
theory we soon end up with very complex problems that
are difficult, if not impossible, to solve.

Since the models used by Vrana I° did not work during
parallel testing, i.e. functional testing, of a system with an
hierarchical structure, a model for the system structure

and test environment used by Vrana was sought. No
software reliability model was found that fulfilled our
requirements and we therefore had to develop a model of
our own, but before we could do this we had to examine
in more detail how functional testing is performed. While
doing this it is possible to identify the assumptions that
are violated, and hence develop a model more suitable
for functional testing than the existing ones.

An investigation of various different telecommunica-
tion projects was undertaken 23. Managers, programmers,
test groups etc. were interviewed to build up a picture of
what happens during the different test stages, especially
during functional testing. Based on this investigation a
process model similar to the one presented by Huff 33 was
developed, which led to the conclusion that the assump-
tions in software reliability models that were not fulfilled
could be identified. By doing this it was possible to
develop an environment-adapted model, i.e. a model
whose assumptions better modelled the product's
behaviour during functional testing 23.

The results show that we are able to get a good picture
of how faults are detected during functional testing using
the model developed. The predictions improve if we
keep track of the number of hours used for testing each
day. The data used for prediction in this example was
collected from failure reports, so we do not know exactly
how effective the testing was over different periods. We
are, however, convinced that if data are collected directly
for the model, we will get very good estimates of the times
concerned. Before we can state this definitely we have to
evaluate the model carefully on some other projects.

Conclusions on reliability models

Above we have established the possibility of comparing
different software reliability models and of developing
models adapted for a specific environment. It is essential
to try to understand the stochastics of how software
failures occur, to obtain an efficient, reliable, maintainable
and manageable software product.

The main point of the comparison of reliability models
is to indicate the need to choose software reliability
models that are well suited to the environment and
applications instead of taking the multimodelling or
'simply using' approach. This choice has been shown to
be possible. Once realistic models have been identified,
they must be compared to find the model which gives the
most accurate estimate; this entails an investigation of
available models and the information obtained from
them. There has to be a criterion, objective and well
known to everyone, that can be used when choosing the
model to use in different projects. Different models may
even have to be applied during different phases of the
software life cycle.

The identification of realistic software reliability
models to a specific environment or application can only
be done if we make a survey of software projects, find the
critical parts, examine the main points, and get an overall
view of the behaviour of the underlying processes. This
survey has already been undertaken for hardware, but it is
also necessary for software. Systems are getting continually
larger and more complex. If we do not want to end up
with a software product that is 'out of control', it is
necessary to adopt or adapt a realistic existing software
reliability model or develop an environment-adapted
model.

372 Microprocessors and Microsystems

Q U A L I T Y C O N S T R A I N T M O D E L

It is well known that it costs more to correct a software
fault in the operational phase than in the test phase, but it
is not economical to make the test phase very long simply
to get rid of all faults. This means that there has to be an
economical minimum at some time 34' 3s.

The cost function is hard to elucidate; it depends on
factors connected with the system, the environment,
testing methods, the market, maintenance routines etc.
But if we could find the cost function and assume that
each fault contributes equally to the cost, then we would
be able to find out how many faults we should try to
correct during the test phase - - before we release the
software product - - to obtain the economical optimum.

A logical approach to the problem, would be to

• decide how many faults we should remove in the test
phase to minimize the cost function

• develop a model for deriving the mean and variance of
the time we have to spend in the test phase to
minimize the cost function

• plan for different cases, from best to worst, depending
on how the test phase goes (a company should always
be prepared for the worst and should not be surprised
if it happens).

T h e m o d e l

We want to develop a model for determining the mean
and variance of the time to spend in the test phase to
minimize the cost function. A sensible way to do the
testing would be to put a quality constraint, based on the
number of faults to remove in order to minimize costs, on
the product and allow the time before the product is put
into operation to vary. The problem is solved using the
following three assumptions.

• The initial number of faults when the test phase is
started are estimated to a known accuracy. (Estimation
of the number of faults from complexity metrics was
discussed above. An improved estimate can be
obtained from reliability models.)

• The failure time distribution is known. (Failure time
distribution is known when realistic reliability models
are used. The distribution could be found through
measurements on earlier projects, for example. The
models are used to estimate the software failure
occurrences in the future; in this application we are
not considering reliability itself. The use of reliability
models has been discussed above.)

• If a fault is found, it is corrected and no new faults are
introduced. (This assumption is quite natural, even
though it is not always true, because it is always the
aim when correcting faults. Deriving results will be
easier with this assumption, but it is possible to find
some results if we assume that the fault correction has a
certain probability of success.)

It is possible to calculate the mean and variance of the
time when a specific number of faults remain 36. It should
be observed that the formulae for doing this do not
assume an equal contribution to the cost from all faults.
This assumption only influences the quality constraint on
the number of faults that should remain, and it could be
partly overcome by putting a quality constraint on the
failure intensity; this means, however, that we have to
assume that the size of a fault is proportional to the cost of
correcting it.

The results obtained here for numbers of faults against
time give a good idea of the amount of time to test the
product while fulfilling the quality constraints, and to see
how this time varies. We should keep in mind that the
results are examples of the inevitable consequences that
the formulae 36 lead to. When using the formulae we
should be aware of the following.

• Complexity metrics are needed to estimate the initial
number of faults at an early stage.

• Failure time distributions must be found that are
applicable to our own specific problems.

• There will probably be different failure time distribu-
tions during different phases of the software life cycle.

The principal results are shown in Figure 4, which is valid
for all failure time distributions where the num ber of faults
remaining decreases. If we consider a number of distribu-
tions with the same mean value, the difference in Figure 4
will be the variance (i.e. the length of the arrows in the
figure).

We have estimated the initial number of faults to be No
and we would like to test the software product until we
reach Nopt; this happens at T e if we do not consider the
variations in No and T e. Now let us consider variations of
both N o and T e and see what happens. If we assume that
we have estimated No to be somewhere within the
interval (No - AN0, N o + AN0), then we observe that we
have a best and a worst case, remembering that N o was
the initial number of faults. If we study the best and the
worst case and assume that T e varies as marked in Figure 4
by the broken arrows, then we obtain an interval AT,
marked in the figure by the solid arrow, in which Te lies.
This interval is rather large for most current realistic failure
time distributions, and to get a good estimate of T e we
have to make AT much smaller; otherwise we get a
software product that is at least partly out of control.

Perhaps the most important aspect of the model
discussed above is to understand the inevitable conse-
quences of software failure stochastics. There are two

N O + A N o -
' \

N 0 - \ \
-- \ \ \

N O - ~N 0 , \ \

Nopt - ~'~ " ~1
I
i
i
i

I I i I
re

t
~ T

Figure 4. Principal results: n u m b e r of faults N t against
t ime t. No + ANo is the es t imated initial number of faults;
Nopt is the ' ideal ' level o f faults at the end of the test period,
Le. at t ime T e (which varies as shown by the broken
arrows); A T is the total t ime span within which T e may
lie

Vol 11 No 7 September 1987 373

primary and two secondary ways of improving the
situation. The two primary ways, dealing with the problem
of making the test phase shorter, are

• to reduce the number of initial faults, perhaps by
developing better methods and tools for the design
and construction

• to develop better methods and tools for the test phase,
i.e. more systematic testing routines

The two secondary ways of making the situation better
deal with the problem of making the variances smaller;
they are

• to obtain a better estimate of the number of initial
faults (i.e. reduce N o)

• to decrease the variance in Te, again using better
methods and tools during testing and more systematic
testing routines

If we do not make the estimated interval for T e smaller,
two things, both of them uneconomical, could happen:
we could stay in the test phase longer than necessary, just
to be on the safe side; or we could leave the test phase
too early, which could lead to the software product being
very expensive to maintain and, in the worst case, to an
inefficient, unreliable, unmanageable and unmaintainable
software product.

most cases, possible to develop an environment-adapted
model.

The possibility of using complexity metrics and relia-
bility models together to control and plan the release of
the software product has been discussed.

In the future software metrics will be a natural
ingredient in the development and operation of software
products. We will have tools for data collection, databases
with information from earlier projects, handbooks for
software metrics and expert systems for different aspects
of a system, e.g. software reliability models. This will make
it possible to develop larger and more complex systems
of high quality within set time schedules and budgets.

The ideas and techniques presented are beginning
to be used within the Swedish Telecommunication
Administration (STA). Tools and methods are developed
at Telelogic AB, a subsidiary of the STA. The software relia-
bility group at Ellemtel Telecommunication System
Laboratories, a subsidiary of the STA and Ericsson, has
been testing metrics and models for several years, and
research at Lund Institute of Technology continues. Since
the field is quite new it is important to exchange
experiences and results on all aspects of software metrics
and models, both research results and practical
experiences; this is an integral part of the programme at
the Lund Institute.

CONCLUSIONS

The need for software metrics will continue to grow as the
systems being developed become larger and more
complex. Software metrics will be one way to ensure that
the system development process is under control, that
the project proceeds as planned, and that the quality
constraints are fulfilled. Software metrics have to be intro-
duced into organizations developing software products in
order to cope with the demands put on the systems.

The emphasis in this paper has been on fault content
and reliability estimations, but software metrics are
needed for all aspects concerning quality, resources,
economy etc. Fault content estimations are very important
when developing software products because time
schedules, quality and the overall economic result of the
project are often highly dependent on the fault content.

It has been shown here that complexity measurements
are valuable in a number of applications. To plan and
control software projects, it is essential to measure
complexity early in the software life cycle. This summarized
study shows an important property of a well defined
description language such as SDL--the possibility of
measuring, estimating and controlling before the coding
phase. We have also emphasized the need for complexity
studies within the actual project environment rather than
adapting models and results from other environments.

Reliability models give us the possibility of estimating
the reliability of the product, and they can be a useful tool
in the process of controlling and planning a software
project both during development and operation. It is
essential, however, that the models used are realistic. By
this we do not mean that the models have to be perfectly
matched to the environment and techniques used, but
we have to be aware of the differences between them. To
find suitable models for different applications the models
have to be compared with each other and evaluated; if no
model is found to be realistic for the application it is, in

REFERENCES

1 DeMarco, T Controlling software projects Yourdon
Press, New York, NY, USA (1982)

2 Conte, S, Dunsmore, H and Shen, V Software
engineering metrics and models Benjamin/Cure mings,
Menlo Park, CA, USA (1986)

3 Basili, V R and Rombach, H D 'Tailoring the software
process to project goals and environments' Proc. 9th
InL Conf. Software Engineerin~ Monterey, CA, USA
(IEEE Cat. No 87CH2432-3) (1987) pp 345-357

4 Kilchenham, B and Walker, J 'The meaningof quality'
in Barnes, D and Brown, P (eds) Software engineer-
ing '86 Peter Peregrinus, Stevenage, UK (1986) pp
393-406

5 Boehm, B Software engineering economics Prentice-
Hall, Englewood Cliffs, NJ, USA (1981)

6 Rapp, D and Vrana, C'Systems and systems manage-
ment environments' NT Symposium, Turku, Finland
(1984)

7 Vrana, C 'S/W engineering economics - - models for
systems with a hierarchical modular structure' NT
Symposium, Turku, Finland (1984)

8 CCITT Recommendations Z101-Z104- Red book
Vol Vl Fascicle 10-11 (1984)

9 Lennselius, B 'Software complexity and its impact on
different software handling processes' Proc. 6th Int.
Conf. Software Engineering for Telecommunication
Switching Systems (lEE 259), Eindhoven, The Nether-
lands (1986) pp 148-153

10 Vrana C and WaUander, A 'S/W quality and
complexi ty--d i f ferent aspects and measurements
results' Proc. 5th Int. Conf. Software Engineering for
Telecommunication Switching Systems (lEE 223),
Lund, Sweden (1983) pp 121-127

11 Wohlin, C 'Astudyof software complexity' MS Thesis,
Lund Institute of Technology, Lund, Sweden (1983)

12 McCabe, T J 'A complexity measure' IEEE Trans.
Software Eng. Vol SE-2 No 4 (1976) pp 308-320

374 Microprocessors and Microsystems

13 Lennselius, B and Vrana, C 'Complexity in the SDL-
graph-description and its impact on different handling
activities' Proc. 2nd SDL Users and Implementors
Forum, Helsinki, Finland (1985)

14 Halstead, M Elements of software science Elsevier,
New York, NY, USA (1977)

15 Kafura, D and Canning, J A 'Validation of software
metrics using many metrics and two resources' Proc.
8th Int. Conf. Software Engineering (IEEE Cat. No
85CH2139-4), London, UK (1985) pp 378-385

16 Yu, T I 'The static and dynamic models of software
defects and reliability' PhD Thesis, Dept of Computer
Science, Purdue University, West Lafayette, IN, USA
(1985)

17 Takahashi, M and Kamayachi, Y 'An empirical study
of a model for program error prediction' Proc. 8th Int.
Conf. Software Engineering (IEEE Cat. No 85 CH2139-4),
London, UK (1985) pp 330-336

18 lelinski, Z and Moranda, P 'Software reliability
research' in Freiburger, W (ed.) Statistical computer
performance evaluation Academic Press, New York,
NY, USA (1972) pp 465-484

19 Goel, A and Okumoto, K 'A time dependent error-
detection rate model for software reliability and other
performance measures' IEEE Trans. Reliability Vol
R-28 No 3 (1979) pp 206-211

20 Schneidewind, N 'Analysis of error processes in
computer software' Proc. Int. Conf. Reliable Software,
Los Angeles, CA, USA (1975) pp 337-346

21 Littlewood, B and Verral, J 'A Bayesian reliability
growth model for computer software' AppL Statist.
Vol 22 (1973) pp 332-346

22 Musa, J D and Okumoto, K 'A logarithmic Poisson
execution time model for software reliability measure-
ment' Proc. 7th Int. Conf. Software Engineering,
Orlando, FL, USA (1983) pp 230-237

23 Wohlin, C 'Software testing and reliability for tele-
communication systems' in Barnes, D and Brown, P
(eds) Software engineering "86 Peter Peregrinus,
Stevenage, UK (1986) pp 27-42

24 Goel, A 'Software reliability models: assumptions,
limitations and applicability' IEEE Trans. Software Eng.
Vol SE-11 No 12 (1985) pp 1411-1423

25 Goel, A, Basili, V and Valdes, P 'When and how to
use a software reliability model' Proc. 7th Software
Engineering Workshop, Greenbelt, MD, USA (1983)

26 AbdeI-Ghaly, A A, Chan, P Y and Littlewood, B 'Evalua-
tion of competing software reliability predictions'
IEEE Trans. Software Eng. Vol SE-12 No 9 (1986) pp
950-967

Bo Lennselius was awarded
an MSc in electrical engineer-
ing in 1983 at the Lund
Institute of Technology, Lund,
Sweden. He was a research
student at the Department
of Communication Systems,
Lund Institute of Technology
from 1983 to 1986, and he is
currently working in the
same department in the field
of software engineering,

specializing in software metrics and complexity
measurements. He also works as a consultant.

27 Goel, A 'A guidebook for software reliability assess-
ment' Rep. RADC-TR-83-176, Syracuse University,
Syracuse, NY, USA (1983)

28 Mills, H 'On the statistical validation of computer
programs' Rep. 72-6015, IBM Federal Systems
Division, Gaithersburg, MD, USA (1972)

29 Nelson, E 'Estimating software reliability from test
data' Microelectron. Rel. Vol 28 (1978) pp 428-443

30 Kleinrock, I_ Queueing systems, Vols I and 2 Wiley,
New York, NY, USA (1975-76)

31 Wohlin, C 'The possibilities of comparing software
reliability models' Tech. Report, Lund Institute of
Technology, Lund, Sweden (1986)

32 Ehrlich, W K and Emerson, T l 'Modeling software
failures and reliability growth during system testing'
Proc. 9th Int. Conf. Software Engineering (IEEE Cat. No.
87CH2432-3), Monterey, CA, USA (1987) pp 72-82

33 Huff, K E, Sroka, I V and Struble, D D 'Quantitative
models for managing software development pro-
cesses' Software Eng.]. No 1 (1986) pp 17-23

34 K~t~n, O and Levy, D 'Software modellingforoptirnal
field entry' Proc. Ann. Reliability and Maintainability
Symp. (1980) pp 410-414

35 Wohlin, C and KOrner, U 'Software faults: spreading,
detection and costs' Tech. Report, Lund Institute of
Technology, Lund, Sweden (1987)

36 Wohlin, C and Vrana, C'Aquality constraint model to
be used during the test phase of the software life
cycle' Proc. 6th Int. Conf. Software Engineering for
Telecommunication Switching Systems (lEE 259),
Eindhoven, The Netherlands (1986) pp 136-141

Claes Wohlin received an
MSc in electrical engineering
in 1983 from the Lund Insti-
tute of Technology, Lund,
Sweden, and was a research
student at the Department
of Communication Systems,
Lund Institute of Technology
from 1983 to 1986. During
this time he worked in the
field of software reliability,
and he was awarded a Licen-

tiate of Technology in this field in 1986. He has been a
research engineer at the Department of Communication
Systems at Lund since 1986. He is currently working in
the field of software engineering, specializing in software
performance, especially reliability and effectiveness.

Ctirad Vrana received an MSc
in electrical engineering in
1976 from Lund Institute of
Technology, Lund, Sweden,
where he remained until
1982. He worked with
methodologies and quality
issues for software at the

. Telecommunication Admin-
istration during 1982-1983,
and was awarded a Licentiate

of Technology in software engineering at the
Department of Communication Systems at Lund in
1984. He is currently head of the Department of
Education at Telelogic AB, Sweden.

Vol 11 No 7 September 1987 375

