
Software Process Improvement through the Lean

Measurement (SPI-LEAM) Method

Kai Petersen∗,a,b, Claes Wohlina

aSchool of Computing, Blekinge Institute of Technology, Box 520, SE-372 25, Sweden
bEricsson AB, Box 518, SE-371 23

Abstract

Software process improvement methods help to continuously refine and ad-

just the software process to improve its performance (e.g., in terms of lead-

time, quality of the software product, reduction of change requests, and so

forth). Lean software development propagates two important principles that

help process improvement, namely identification of waste in the process and

considering interactions between the individual parts of the software process

from an end-to-end perspective. A large shift of thinking about the own

way of working is often required to adopt lean. One of the potential main

sources of failure is to try to make a too large shift about the ways of working

at once. Therefore, the change to lean has to be done in a continuous and

incremental way. In response to this we propose a novel approach to bring

together the quality improvement paradigm and lean software development

practices, the approach being called Software Process Improvement through

∗Corresponding author
Email addresses: kai.petersen@bth.se, kai.petersen@ericsson.com (Kai

Petersen), claes.wohlin@bth.se (Claes Wohlin)
URL: http://www.bth.se/besq; www.ericsson.com (Kai Petersen),

http://www.bth.se/besq (Claes Wohlin)

Preprint submitted to Journal of Systems and Software February 7, 2010

the Lean Measurement (SPI-LEAM) Method. The method allows to assess

the performance of the development process and take continuous actions to

arrive at a more lean software process over time. The method is under im-

plementation in industry and an initial evaluation of the method has been

performed.

Key words:

Lean Software Development, Software Process Improvement, Quality

Improvement Paradigm

1. Introduction

Software process improvement aims at making the software process more

efficient and increasing product quality by continuous assessment and ad-

justment of the process. For this several process improvement frameworks

have been proposed, including the Capability Maturity Model Integration

(CMMI) [1] and the Quality Improvement Paradigm (QIP) [2, 3]. These are

high level frameworks providing guidance what to do, but not how the actual

implementation should look like. The Software Process Improvement through

the Lean Measurement (SPI-LEAM) method integrates the software quality

improvement paradigm with lean software development principles. That is,

it describes a novel way of how to implement lean principles through mea-

surement in order to initiate software process improvements.

The overall goal of lean development is to achieve a continuous and

smooth flow of production with maximum flexibility and minimum waste

in the process. All activities and work products that do not contribute to

the customer value are considered waste. Identifying and removing waste

2

helps to focus more on the value creating activities [4, 5]. The idea of focus-

ing on waste was initially implemented in the automotive domain at Toyota

[6] identifying seven types of waste. The types of waste have been translated

to software engineering into extra processes, extra features, partially done

work (inventory), task switching, waiting, motion, and defects [7]. Partially

done work (or inventory) is specifically critical [8]. The reason for inventory

being a problem is not that software artifacts take a lot of space in stock,

but:

• Inventory hides defects that are thus discovered late in the process [8].

• Time has been spent on artifacts in the inventory (e.g., reviewing of re-

quirements) and due to change in the context the requirements become

obsolete and thus the work done on them useless [9].

• Inventory impacts other wastes. For example, a high level of inventory

causes waiting times. Formally this is the case in waterfall develop-

ment as designers have to wait until the whole requirements document

has been approved [9]. Long waiting times bare the risk of completed

work to become obsolete. Furthermore, high inventory in requirements

engineering can be due to that a high number of extra features have

been defined.

• Inventory slows down the whole development process. Consider the

example of a highway, if the highway is overloaded with cars then the

traffic moves slowly.

• High inventory causes stress in the organization [10].

3

Lean manufacturing has drastically increased the efficiency of product

development and the quality of products in manufacturing (see for example

[4]). When implemented in software development lean led to similar effects

(cf. [10, 11]). Even though lean principles are very promising for software

development, the introduction of lean development is very hard to achieve as

it requires a large shift in thinking about software processes. Therefore, an

attempt to change the whole organization at once often leads to failure. This

has been encountered when using lean in manufacturing [12] and software

development [8].

To avoid the risk of failure when introducing lean our method helps the

organization to arrive at a lean software process incrementally through con-

tinuous improvements. The method relies on the measurement of different

inventories as well as the combined analysis of inventory measurements. The

focus on inventory measurement is motivated by the problems caused by in-

ventories discussed earlier. Furthermore, inventories also show the absence

of lean practices and thus can be used as support when arguing for the intro-

duction of the principles. In the analysis of the inventories a system thinking

method is proposed as lean thinking requires a holistic view to find the real

cause of problems. That is, not only single parts of the development process

are considered, but the impact of problems (or improvement initiatives) on

the overall process have to be taken into consideration.

Initial feedback on SPI-LEAM was given from two software process im-

provement representatives at Ericsson AB (see [13]). The objective was to

solicit early feedback on the main assumptions and steps of SPI-LEAM from

the company, which needs triggered the development of the method.

4

The remainder of the paper is structured as follows: Section 2 presents

the related work on lean software development in general and measurement

for lean software development in particular. Section 3 presents the Software

Process Improvement through the Lean Measurement (SPI-LEAM) Frame-

work. Section 4 presents a preliminary evaluation of the method. Section

5 discusses the proposed method with focus on comparison to related work,

practical implications, and research implications. Section 6 concludes the

paper.

2. Related Work

2.1. Lean in Software Engineering

Middleton [8] conducted two industrial case studies on lean implemen-

tation in software engineering, and the research method used was action

research. The company allocated resources of developers working in two dif-

ferent teams, one with experienced developers (case A) and one with less

experienced developers (case B). The responses from the participants was

that initially the work is frustrating as errors become visible almost immedi-

ately and are returned in the beginning. In the long run though the number

of errors dropped dramatically. After the use of the lean method the teams

were not able to sustain the lean method due to organizational hierarchy,

traditional promotion patterns, and the fear of forcing errors into the open.

Another case study by Middleton et al. [11] studied a company practicing

lean in their daily work for two years. They found that the company had

many steps in the process not being value-adding activities. A survey among

people in the company showed that the majority supports lean ideas and

5

thinks they can be applied to software engineering. Only a minority (10

%) is not convinced of the benefits of lean software development. Statistics

collected at the company show a 25 % gain in productivity, schedule slippage

was reduced to 4 weeks from previously months or years, and time for defect

fixing was reduced by 65 % - 80 %. The customer response on the product

released using lean development was overwhelmingly positive.

Perera and Fernando [14] compared an agile process with a hybrid process

of agile and lean in an experiment involving ten student projects. One half of

the projects was used as a control group applying agile processes. A detailed

description of how the processes differ and which practices are actually used

was not been provided. The outcome is that the hybrid approach produces

more lines of code and thus is more productive. Regarding quality, early in

development more defects are discovered with the hybrid process, but the

opposite trend can be found in later phases, which confirms the findings in

[8].

Parnell-Klabo [15] followed the introduction of lean and documented

lessons learned from the introduction. The major obstacles in moving from

agile are to obtain open office space to locate teams together, gain executive

support, and training and informing people to reduce resistance of change.

After successfully changing with the help of training workshops and use of

pilot projects positive results have been obtained. The lead-time for delivery

has been decreased by 40 % - 50 %. Besides having training workshops and

pilots sitting together in open office-landscapes and having good measures to

quantify the benefits of improvements are key.

6

2.2. Lean Manufacturing and Lean Product Development

Lean principles initially focused on the manufacturing and production

process and the elimination of waste within these processes that does not

contribute to the creation of customer value. Morgan and Liker [16] point

out that today competitive advantage cannot be achieved by lean manufac-

turing alone. In fact most automotive companies have implemented the lean

manufacturing principles and the gap in performance between them is clos-

ing. In consequence lean needs to be extended to lean product development,

not only focusing on the manufacturing/production process. This trend is

referred to as lean product development which requires the integration of de-

sign, manufacturing, finance, human resource management, and purchasing

for an overall product [16]. Results of lean product development are more

interesting for software engineering than the pure manufacturing part as the

success of software development highly depends on an integrative view as

well (requirements, design and architecture, motivated teams, etc.), and at

the same time has a strong product focus.

Morgan and Liker [16] identified that inventory is influenced by the fol-

lowing causes: batching (large hand-overs of, for example, requirements),

process and arrival variation, and unsynchronized concurrent tasks. The

causes also have a negative effect on other wastes: batching leads to overpro-

duction; process and arrival variation leads to overproduction and waiting;

and unsynchronized tasks lead to waiting. Thus, quantifying inventory aids

in detecting the absence of lean principles and can be mapped to root causes.

As Morgan and Liker [16] point out their list of causes is not complete. Hence,

it is important to identify the causes for waste after detecting it (e.g. in form

7

of inventories piling up).

Karlsson and Ahlströhm [17] identified hinders and supporting factors

when introducing lean production in a company in an industrial study. The

major hinders are: (1) It is not easy to create a cross-functional focus as

people feel loyal to their function; (2) Simultaneous engineering is challeng-

ing when coming from sequential work-processes; (3) There are difficulties

in coordinating projects as people have problems understanding other work-

disciplines; (4) It is challenging to manage the organization based on visions

as people were used to detailed specifications and instructions; (5) The re-

lationship to customers is challenging as cost estimations are expected, even

in a highly flexible product development process. Factors helping the intro-

duction of lean product development are: (1) Lean buffers in schedules; (2)

Close cooperation with customers in product development to receive feed-

back; (3) For moving towards a new way of working successfully high compe-

tence engineers have to be involved; (4) Commitment and support from top

management is required; (5) regular face-to-face meetings of managers from

different disciplines.

Oppenheim [18] presents an extension of the value-stream mapping pro-

cess to provide a comprehensive framework for the analysis of the develop-

ment flow in lean product development. The framework is split into different

steps. In the first step a takt-period is selected. A takt is a time-box in

which different tasks are fulfilled and integrated. The second step is the

creation of a current-state-map of the current process. The current-state

map enables the identification of wastes and is the basis for the identification

of improvements (e.g. the relations between waiting times and processing

8

times become visible). Thereafter, the future-state-map is created which is

an improved version of the map. Oppenheim stresses that all participants of

the value-stream mapping process must agree to the future-state-map. After

having agreed to the map the tasks of the map are parsed into the takt times

defined in the first step. The last step is the assignment of teams (team archi-

tecture) to the different tasks in the value stream map. A number of success

measures have been defined for the proposed approach: Amount of through-

put time cut in comparison to competitors or similar completed programs;

Amount of waste removed in the value-stream map (time-units or monetary

value); Deviation of the planned value stream and the real value stream;

Morale of the teams in form of a survey. Furthermore, the article points

out that the goal of lean is to become better, cheaper, and faster. Though

the reality often was that cheaper and faster was achieved on the expense of

better (i.e. quality). One possible reason could be that no combined analysis

of different measures was emphasized. Instead, measures were proposed as

separate analysis tools (see Maskell and Baggaley [19] for analysis tools in

the manufacturing context), but there is no holistic measurement approach

combining individual measures to achieve a comprehensive analysis.

3. SPI-LEAM

The framework is based on the QIP [20] and consists of the steps shown in

Figure 1. The steps according to Basili [20] are 1) Characterize the Current

Project, 2) Set Quantifiable Goals and Measurements, 3) Choose Process

Models and Methods, 4) Execute Processes and Collect and Validate Col-

lected Data, 5) Analyze Collected Data and Recommend Improvements, and

9

6) Package and Store Experiences Made. The main contribution of this paper

is to present a solution to step 2) for lean software development. The steps

marked gray apply our method to achieve continuous improvement towards

a lean software process.

Characterize the Current
Project

Set Quantifiable Goals
and Measurements

Choose Process Models
and Measurements

Execute Processes and
Collect / Validate Data

Analyze Data and
Recommend Improvements

Describe project characteristics and the
environment

Achieve continues improvements towards
lean processes with lean measurements

Select process models that fit the environment
or select adjustments to existing processes /
tools / methods

Record the measurements defined in 2) while
executing the processes defined in 3)

Analyze the data and identify causes for
problems to take corrective actions
towards a lean software process

(1)

(5)

(4)

(3)

(2)

Package and
Store Experiences Made(6)

Data on experience made is stored so that the
experience can be used in future
improvements

QIP Steps Instantiation of Steps
for Lean Measurement

Figure 1: SPI-LEAM: Integration of QIP and Lean Principles

The steps are executed in an iterative manner so that one can always

go back to previous steps and repeat them when needed. The non-expended

steps are described on a high level and more details are provided for the steps

expanded in relation to lean. The expansion of the second step (Set Quan-

tifiable Goals and Measures) is explained in Section 3.2, and the expansion

of the fifth step (Analyze Collected Data and Recommend Improvements) in

Section 3.3.

1. Characterize the Current Project: In the first step, the project charac-

teristics and the environment are characterized. This includes charac-

teristics such as application domain, process experience, process exper-

tise, and problem constraints [20].

10

Requirements
Engineering

System Design
and

Implementation
Software Test Release

Requirements Test Cases

Change Requests Faults (Test / Customer)

Quality (Fault Slip Through)

Extra Work

Normal Work

Quality

Figure 2: Inventories in the Software Process

2. Set Quantifiable Goals and Measurements: It is recommended to use

the goal-question-metric approach [2] to arrive at the goals and asso-

ciated measurement. The goal to be achieved with our method is to

enable continuous software process improvement leading to a lean soft-

ware process. The emphasis is on achieving continuous improvement

towards lean software processes in order to avoid the problems when in-

troducing an overall development paradigm and getting acceptance for

the change, as seen in [8, 12]. The goals of achieving a lean process are

set by the researchers to make the purpose of the method clear. When

applying the method in industry it is important that the goals of the

method are communicated to industry. In order to achieve the goals two

key questions are to be answered, namely 1) what is the performance

of the development process in terms of inventories, and 2) what is the

cause of performance problems? The answer to the first question should

11

capture poor performance in terms of different inventories. Identifying

high inventory levels will help to initiate improvements with the aim

of reducing the inventories and by that avoiding the problems caused

by them (see Section 1). The second question aims at identifying why

the inventory levels are high. This is important to initiate the right

improvement. To identify the inventories in the development process

one should walk through the development process used in the company

(e.g,. using value stream mapping aiming at identifying waste from the

customers’ perspective [7]). This is an important step as not all com-

panies have the same inventories. For example, the company studied

requires an inventory for product customizations. For a very generic

process, as shown in Figure 2, we can find the following inventories:

requirements, test cases, change requests, and faults. The inventories

for faults and fault-slip-through represent the quality dimension. A de-

tailed account and discussion of the inventories is provided in Section

3.2. The collection mechanism is highly dependent on the company in

which the method is applied. For example, the collection of require-

ments inventory depends on the requirements tool used at the specific

company.

3. Choose Process Models and Methods: This step decides which process

model (e.g., waterfall approach, Extreme Programming (XP), SCRUM)

to use based on the characteristics of projects and environment (Step

1). If, for example, the environment is characterized as highly dynamic

an agile model should be chosen. We would like to point out that

the process model is not always chosen from scratch, but that there

12

are established models in companies that need further improvement.

Thus, the choice can also be a modification to the process models or

methods and tools used to support the processes. For example, in order

to establish a more lean process one approach could be to break down

work in smaller chunks to get things faster through the development

process.

4. Execute Processes and Collect and Validate Collected Data: When the

process is executed measurements are recorded. In the case of SPI-

LEAM the inventory levels have to be continuously monitored. There-

after, the collected data has to be validated to make sure that it is

complete and accurate.

5. Analyze Collected Data and Recommend Improvements: In order to

improve performance in terms of inventory levels the causes for high

inventories have to be identified. For understanding a specific situation

and to evaluate improvement actions system thinking methods have

been proven to be successful in different domains. Having found the

cause for high inventory levels, a change to the process or the methods

used has to be made.

6. Package and Store Experiences Made: In the last step the experience

made has to be packaged, and the data collected needs to be stored so

the experiences made are not lost and can be used for future improve-

ments.

The following section provides an overview of how SPI-LEAM aids in con-

tinuously improving software processes to become more lean. This includes

detailed descriptions of the expansions in steps two and five of the QIP.

13

3.1. Lean Measurement Method at a Glance

The first part of the method is concerned with setting quantifiable goals

and measurements (Second step in the QIP). This includes the measurement

of individual inventories. Thereafter, the measures of individual inventories

are combined with each other, and with quality measurements (see Figure 3).

How to measure individual inventories and combine their measurements with

quality are explained in Section 3.2. For analysis purposes it is recommended

not to use more than five inventories to make the analysis manageable. It

is also important that at least one inventory focuses on the quality dimen-

sion (faults, fault-slip-through). Each measure should be classified in two

different states, namely high inventory levels and low inventory levels. With

that restriction in mind the company can be in 25 = 32 different states

(2 corresponding to high and low inventory levels, and 5 corresponding to

the number of measurements taken). However, as the technique allows to

measure on different abstraction levels, one individual inventory level (e.g.

requirements) is derived from several sub-inventories (e.g. high level require-

ments, detailed requirements). Thus, we believe that companies should easily

manage with a maximum of five inventories without neglecting essential in-

ventories. Table 1 summarizes the goals, questions, and metrics according

to the Goal-Question-Metric approach [2]. The inventories in the table are

based on activities identified in the software engineering process (see e.g.

[21]). As mentioned earlier each company should select the inventories rele-

vant to their software processes.

The second part of the method is concerned with the analysis of the

situation, i.e. the aim is to determine the causes for high inventory level

14

Table 1: Goal Question Metric for SPI-LEAM
Dimension Specification

Goals

• Enable continuous software process improvement leading

to a lean software process.

• Avoid problems related to resistance of change by improv-

ing in a continuous manner.

Questions

• Q1: What is the performance of the development process

in terms of inventories?

• Q2: What is the cause of performance problems?

Metrics

• Requirements (Individual Inv.)

– High level Req. (Sub.-Inv.)

– Detailed Req.

– Req. in Design and Impl.

– Req. in Test

• Test Cases (Individual Inv.)

– Unit Test (Sub.-Inv.)

– Function Test

– Integration Test

– System Test

– Acceptance Test

• Change Requests (Individual Inv.)

– CR under Review

– Approved CRs

– CRs ready for Impact Analysis

– CRs in Test

• Faults and Failures (Individual Inv.)

– Internal Faults and Failures (Test)

– External Faults and Failures (Customer)

• Fault Slip Through (Quality)

– Req. Review Slippage

– Unit Test Slippage

– Function Test Slippage

– etc.

and quality problems. In other words, we want to know why we are in a

certain state. Based on the analysis it is determined to which state one

15

Individual Inventories

Quality

+

Determine State Based on High
/ Low Inventory Levels

Analysis and Flow Between States

Good

Bad

Corresponds to Step 2 in the QIP (Set
Quantifiable Goals and Measurements)

Corresponds to Step 5 in the QIP (Analyze
Collected Data and Recommend Improvements)

Figure 3: Method at a Glance

should move next. For example, which inventory level should be reduced

first, considering the knowledge gained through the analysis. To make the

right decisions the end-to-end process and the interaction of its parts are

taken into consideration. As system theory in general and simulation as a

sub-set of system theory methods allows to consider the interactions between

individual parts of the process (as well as the process context) we elaborate

on which methods are most suitable to use in Section 3.3.

3.2. Measure and Analyze Inventory Levels

The measurement and analysis takes place in the second step of the QIP

as shown in the previous section. The measurement and analysis of inventory

requires two actions:

• Action 1: Measure the individual inventories, i.e. change requests,

faults, requirements, and test cases (see Figure 2). Each individual

inventory (e.g., requirements) can have sub-inventory (e.g. high level

requirements, detailed requirements, requirements in implementation,

requirements in test) and thus these inventories are combined to a single

16

inventory ”requirements”. The measurement of the inventories is done

continuously to be able to understand the change of inventories over

time. Inventories can also be split into work in process and buffer. The

advantage is that this allows to determine waiting times, but it also

requires to keep track of more data points.

• Action 2: Determine the overall state of the software process for a

specific product combining the individual inventory levels. The combi-

nation of individual inventories is important as this avoids unintended

optimization of measurements. That is, looking on one single inventory

like requirements can lead to optimizations such as skipping require-

ments reviews in order to push the requirements into the next phase

quicker. However, when combining inventory measures with each other

and considering inventories representing the quality dimension will pre-

vent this behavior. As a quality dimension we propose to use fault-slip

through measurement [22] and the fault inventory.

3.2.1. Step 1: Measure Individual Inventories

Measurement Scale: In this step each of the inventories is measured in-

dividually considering the effort required for each item in the inventory. In

manufacturing inventory is counted. In software development just counting

the inventory is insufficient as artifacts in software development are too differ-

ent. For example, requirements are of different types (functional requirement,

quality requirement) and of different complexities and abstraction levels (see

for example [13]). Furthermore, requirements might never leave the inven-

tory as they are always valid (e.g. requirements on system response times).

17

Similar issues can be found for testing, like test cases that are automated for

regression testing are different from manual test cases. As a consequence we

propose to take into account the effort required to implement a requirement,

or to run a test case. To make the importance of considering effort more

explicit, take the example of a highway again. It is a difference if we put a

number of trucks on a crowded highway, or a number of cars. In terms of re-

quirements this means that a high effort requirement takes much more space

in the development flow than small requirements. For each of the inventories

there are methods available to estimate the effort:

• Requirements: Function points have been widely used to measure the

size of systems in terms of requirements. This can be used as an input

to determine the effort for requirements [23]. Another alternative is to

estimate in intervals by classifying requirements as small, medium, or

large. For each class of requirements an interval has to be set (e.g. in

person days).

• Test Cases: Jones [21] proposed a model to estimate the effort of test-

ing based on function point analysis. Another approach combines the

number of test cases, test execution complexity, and knowledge of tester

to estimate the effort of test execution [24].

• Change Requests: The effort of a change is highly influenced by the

impact the change has on the system. Therefore, impact analysis can

be used to provide an indication of how much effort the change requires

[25].

• Faults: A method for corrective maintenance (e.g. fixing faults) has

18

been evaluated by De Lucia et al. [26] considering the number of tasks

needed for maintenance and the complexity of the system.

Describe Individual Inventory Levels: Individual inventories are broken

down further into sub-inventories when needed. For example, requirements

can be broken down into high level requirements, detailed requirements, re-

quirements in design phase, and requirements in release. Similar, test cases

can be broken down into unit test cases, integration test cases, system test

cases, etc. The measurement of effort in inventory is done on the lowest

level (i.e. high level requirements inventory, detailed requirements inventory,

and so forth) and later combined to one single measure for requirements

inventory. In Figure 4 the example for requirements (fictional data) and re-

lated sub-inventories is illustrated using a radar chart. We use this way of

illustrating inventories throughout the whole analysis as it allows to see the

distribution of effort between inventories in one single view very well. Based

on this view it is to be determined whether the inventory level is high or low

for the specific company. As mentioned earlier this depends on the capacity

available to the company. Therefore, for each dimension one has to com-

pare the capacity with the inventory levels. The situation in Figure 4 would

suggest that there are clear overload situations for high level requirements

and requirements in implementation. The inventory of requirements to be

specified in detail is operating at its maximum capacity while there is free

capacity for requirements in test.

Simulating Overload Situations: One should aim for a situation where

the process is not overloaded, but the process should be stressed as much as

possible. Figure 5 illustrates the situation of overload. If the load (inventory)

19

Figure 4: Measuring Requirements Inventory

is higher than the capacity then there is a high overload situation (in analogy

to the highway there are more cars on the road than the road was designed

for) and thus the flow in the process is jammed. A critical overload situation

means close to complete standstill. If the capacity is almost completely

utilized (the highway is quite full) then the flow moves slower, but still has

a steady flow. Below that level (good capacity utilization) the resources

are just used right, while when reducing the load too much an underload

situation is created. To determine which are the thresholds for critical, high,

and overload situations, queuing theory can be used. The inventory (e.g.

requirements) represents the queue and the activity (e.g. system design and

implementation) represents the server. An example of such a simulation for

only requirements can be found in Höst et al. [27].

Set Inventory Level to High or Low: With the knowledge of when the or-

ganization is in an overload situation one can measure whether the inventory

20

High

Low

Capacity
Inventory /

Queue

Critical Overload Situation

High Overload Situation

High Capacity Utilization
Good Capacity Utilization
Underload

Figure 5: Good and Bad Inventory Levels

level is high or low. As we only allow two values in the further analysis (i.e.

high and low) for reducing the complexity of the analysis we propose to clas-

sify inventories within the areas ”good capacity utilization” and ”underload”

as low, and the ones above that as high. In order to combine the different

sub-inventories for requirements into one inventory different approaches are

possible, like:

• After having simulated the queues and knowing the zones the overall

inventory level is high if the majority of sub-inventories is rated high.

• Sub-inventories are not independent (e.g. the queue for detailed re-

quirements is influenced by the queue of high level requirements and

the capacity of the server processing the high level requirements). Thus,

more complex queuing networks might be used to determine the critical

values for high and low.

• We calculate the individual inventory level II as the sum of the differ-

ence between capacity of the server for inventory i (Ci) and the actual

measure for inventory i (Ai), divided by the number of sub-inventories

n.

21

II =

∑n
i (Ci − Ai)

n
(1)

If the value is negative then on average the company operates above

their capacity. Thus, one should strive for a positive value which should

not be too high as this would mean that the company operates with

underload.

3.2.2. Determine the State of the Process Combining Inventories and Quality

Measurement

As mentioned earlier it is good to restrict the number of states (e.g. to

25 = 32) as this eases the analysis and it is possible to walk through and

analyze the possible states in more depth. If this restriction is not feasible

the number of states grows quite quickly, and with that the complexity of

analysis. In order to illustrate the combined inventory level we propose to

draw a spider web again with the average efforts for sub-inventories, the

average capacity for each individual inventory and the rating as high or low.

Even though we know the state for each inventory level the reason for drawing

the diagram is that it allows to see critical deviations between inventories

and capacity, as well as effort distributions between inventories. Besides the

inventories it is important to consider the quality dimension. The reason is

that this avoids an unintended optimization of measures. We propose to use

the fault slip through (FST) and the number of faults to represent the quality

dimension. The number of faults is a quality indicator for the product while

the FST measures the efficiency of testing.

The FST measure helps to make sure that the right faults are found in the

right phase. Therefore, a company sets up a test strategy determining which

22

type of fault can (and should) be found in which test phase (e.g. function

test). If the fault is found later (e.g. system test instead of function test)

then the fault is considered a slip-through. Experience has shown that the

measure in Equation 2 is one of the most useful [28]:

PIQ =
SF

PF
(2)

The measure in Equation 2 shows the Phase Input Quality to a specific

phase (phase X). SF measures the number of faults that are found in phase X,

but should have been found earlier. PF measures the total number of faults

found in phase X. When conducting this measurement it is also important

to consider whether overall a high or low number of faults are found in phase

X. In order to determine whether the testing strategy is in a good or bad

state consider Figure 6. The figure shows four states based on 1) whether the

overall number of faults found in phase X can be considered as high or low,

and 2) whether the PIQ is high or low. Combining these dimensions leads to

a high or low FST-figure. Whether the number of faults in phase X is high

is context dependent and can, for example, be determined by comparing the

number of faults found across different test phases.

The four dimensions in Figure 6 can be characterized as follows:

• (No. Faults High, PIQ High): The fault-slip of faults to phase X is

quite high, as well as the overall number of faults is high. This is an

indicator for quality issues and low testing efficiency. We assign the

value high to the FST measure.

• (No. Faults High, PIQ Low): In this situation the test strategy is not

23

Low quality
of previous
test phases

High

H
igh

Test
Strategy
not Strict
Enough

???

PIQ

No. of Faults

Adherence
to Test

Strategy
Low

Phase X
Tested
Wrong
Things
High

Low

HighLow

Figure 6: FST-Level

strict enough and should probably require that more faults should be

found in earlier phases. As the data is based on a flawed test strategy

the results should not be used as an indicator for process performance.

• (No. Faults Low, PIQ High): Phase X probably tested the wrong

things as one can assume that more faults are discovered considering a

high fault-slip in earlier phases. We assign the value high to the FST

measure.

• (No. Faults Low, PIQ Low): The process adheres to the testing strat-

egy and few faults are discovered which is an indicator of good quality.

We assign the value low to the FST measure.

As effort is used throughout the method it is important to mention that

FST can be transfered into effort as well. With the knowledge of average

effort for fixing a fault found in a certain phase the improvement opportunity

can be calculated.

In summary, the result of the phase are:

24

• A radar chart showing the average efforts and capacities related to each

individual inventory, and the result of the improvement opportunity in

terms of effort for faults found late in the process (FST).

• A description of the values of the inventory levels rated as either low

or high with at least one inventory representing the quality dimension.

3.3. Analysis and Flow Between States

The analysis focuses on understanding the reasons for the current situa-

tion and finding the best improvement alternatives to arrive at an improved

state. As a simple example consider a situation with one inventory (test

cases) and the FST measure (see Figure 7). Analyzing the situation with just

two measures shows that 1) no inventory measures should be taken without

quality, and 2) combining measures allows a more sophisticated analysis than

looking at different measures in isolation. Consider the situation in Figure

7 with one inventory (Test Cases) and the FST measure, both being labeled

as either high or low based on the analysis presented before. Four different

states are possible:

1. (TC high, FST high): In this situation the company is probably in a

critical situation as they put high effort in testing and at the same time

testing is inefficient. Thus, this situation means that one has to explore

the best actions for improvements. That is, one has to consider why

the testing process and testing techniques lead to insufficient results.

Possible sources might be found in the context of the process (e.g.

requirements which form the basis for testing) or problems within the

process (e.g. competence of testers).

25

2. (TC high, FST low): This state implies that the company delivers good

quality and puts much effort to do so in terms of test cases. Therefore,

one does not want to move away from the low FST status, but wants

to improve testing efficiency in order to arrive at the same result for

FST without loosing quality. An option for improvement could be to

switch to more automated testing so the effort per test case is reduced.

3. (TC low, FST high): The test effort in terms of test cases is good,

but there is low efficiency in testing. Either too little effort is spent on

testing or the testing process and test methods need to be improved.

4. (TC low, FST low): The state is good as testing is done in an efficient

way with a low value for FST.

We test a
lot, but

have good
quality

Not so Good

H
igh

Few Test
Cases with

Good
Quality

Good

FST

We test a
lot with

bad quality
/ testing

Not so Good

We test a
lot with little
efficiency

Critical
Test Cases

Low

HighLow

Figure 7: Analysis with Test Cases and FST

The analysis of the situation makes clear that it is important to include

inventories representing the quality of the software product. Situations 1 and

2 are the same in terms of test case level, but lead to different implications

when combined with the FST measure.

26

3.3.1. Analysis with n Inventories

With only two measures this seems to be obvious. Though, the outcome of

the analysis will change when adding more inventories, and at the same time

the analysis becomes more challenging. In order to characterize the situation

of the company in terms of inventory levels the state of the company has to

be determined. The state is defined as s tuple S of inventories si:

S := (s1, s2, s3, ..., sn), si ∈ {high, low} (3)

What we are interested in is how improvement actions lead to a better

state in terms of inventories. An ideal state would be one where all invento-

ries have a good capacity utilization as defined in Figure 5. From an analysis

point of view (i.e. when interpreting and predicting the behavior of devel-

opment based on improvement actions) we assume that only one inventory

changes at a time. When analyzing how to improve the state of inventories

alternative improvement actions need to be evaluated. That is, the company

should aim at reaching the desired state by finding the shortest path through

the graph, the reason being to reduce the time of improvement impact. Fig-

ure 8 shows an example of state changes to achieve a desired state illustrated

as a directed graph. The solid and dashed lines represent two different deci-

sions regarding improvement actions. In the case of the graph decision one

would be preferable to decision two as the desired state is achieved in fewer

state changes, assuming the edges all have the same value.

Methods that can be used to support decision makers in the organization

to make this analysis are presented in Section 3.3.3. In order to make the

theoretical concepts in the case of n inventories more tangible the following

27

Start State

(h,h,h,h)

(h,l,h,h) (h,l,l,h)

(h,l,l,l)

Decision 1

Decision 2

S:=(Inv1, Inv2, Inv3, Inv4)

h:=high; l:=low
(h,l,l,h) (h,h,l,h) (h,l,l,h)

End State

Figure 8: Improving the State of the Inventories

section presents an application scenario.

3.3.2. Application Scenario for Analysis with n States

The following inventories are considered in the application scenario and

thus represent the state of the company S:

S := (Requirements, Change Requests, Faults, Test Cases, Fault Slip)

(4)

In the start state testing was done on one release and correct defects

were found according to the test strategy. Furthermore, the release can be

characterized as mature and thus it is stable, resulting in a low number of

change requests. Though, the number of requirements is high as a project

for the next release will be started. In addition to that testing has identified

a number of faults in the product that need to be resolved. This leads to the

following start state:

S0 := (high, low, high, low, low) (5)

The decision taken to achieve a more lean process in terms of inventory

levels is to put additional resources on fixing the faults found in testing and

28

wait with the new project until faults are resolved. Adding resources in

testing leads to a reduction in the number of faults in the system.

S1 := (high, low, low, low, low) (6)

Due to fault fixing regression testing becomes necessary, which increases

the number of test-cases to be run, leading to state S2.

S2 := (high, low, low, high, low) (7)

Now that testing is handled the work starts on new requirements which

leads to a reduction in requirements inventory. Furthermore, the value for

FST could change depending on the quality of the tests conducted. This

leads to a new current state:

S3 := (low, low, low, high, low) (8)

3.3.3. Analysis Support

Reasoning with different inventories to take the right actions is supported

by the lean principle of ”see the whole”. In other words, a combined anal-

ysis of different parts of a whole (and the interaction between the parts)

have already been considered when combining inventories and quality. As

a solution for handling the analysis and evaluation of improvement actions

different solutions are available which need to be evaluated and compared for

their suitability in the lean context. Systems thinking as a method has been

proven successful to conduct complex analyses. Three type of system ap-

proaches are common, namely hard systems, soft systems, and evolutionary

29

systems.

• Hard Systems: These kind of systems are used for a quantitative analy-

sis not considering soft factors [29]. The systems are usually described

in quantitative models, such as simulation models. Candidates for an-

alyzing the above problem are continuous simulations combined with

queuing theory [30], or Discrete Event Simulations with queuing the-

ory [27]. When repeating the activity in a continuous matter a major

requirement on the model is to be simple and easily adjustable, but

accurate enough. Fulfilling this requirement is the challenge for future

research in this context.

• Soft Systems: Soft systems cannot be easily quantified and and con-

tain interactions between qualitative aspects such as motivations, social

interactions etc. Those problems are hard to capture in quantitative

simulations and therefore some problems will only be discovered using

soft system methodologies [29]. Therefore, they might be used as a

complement to hard systems. In order to visualize and understand soft

systems, one could make use of mind-maps or scenarios and discuss

them during a workshop.

• Evolutionary Systems: This type of system applies to complex social

systems that are able to evolve over time. However, those systems are

very specific for social systems of individuals acting independently and

are therefore not best suited from a process and workflow perspective.

After having decided on an improvement alternative the action is im-

plemented and the improvements are stored and packaged. Thereby, it is

30

important not just to describe the action, but take the lessons learned from

the overall analysis as this will provide valuable data of behavior of the pro-

cess in different improvement scenarios.

4. Evaluation

4.1. Static Validation and Implementation

The purpose of the static validation is to get early feedback from prac-

titioners regarding improvements and hinders in implementing the proposed

approach. Another reason for presenting the approach is to get a buy-in

from the company to implement the approach [31]. In this case the method

has been presented and discussed with two representatives from Ericsson

AB in Sweden, responsible for software process improvement at the com-

pany. The representatives have been selected as they are responsible for

identifying improvement potential in the company’s processes, as well as to

make improvement suggestions. Thus, they are the main stakeholders of

such a method. The goal was to receive early feedback on the cornerstones

of the methodology (e.g. the goals of the method; keeping work-load below

capacity; combining different measurement dimensions; easy to understand

representation of data), as well on limitations of the method. The following

feedback was given:

• The practitioners agree with the observation that the work-load should

be below the capacity. Being below capacity is good as this, accord-

ing to the practitioners experience, makes the development flow more

steady. Furthermore, a lower capacity situation provides flexibility to

31

fix problems in already released software products or in handling cus-

tomization requests.

• When introducing inventory measures at the company the issue of op-

timization of measures was considered early on in the approach. For

example, in order to reduce the level of inventory in requirements one

could quickly write requirements and hand them over to the next phase

to achieve measurement goals. In consequence, the company decided

to consider inventories representing normal work (requirements flow)

as well as quality related inventories (number of faults, and fault-slip-

through). Furthermore, the company measures the number of requests

from customers to provide individual customizations to their systems,

which is an inventory representing extra work.

• The illustration of the data (capacity vs. load) in the form of radar

charts was perceived as easy to understand by the practitioners, due to

the advantages mentioned earlier. That is, one can gain an insight of

several inventories at the same time, and observe how significant the

deviation between capacity and load is.

The following limitation was observed by the practitioners: The method

relies on knowing the capacity of the development in comparison to the work-

load. The practitioners were worried that the capacity and work-load are

hard to determine and are not comparable. For example, there is a high

variance in developer productivity. Even though a team has N developers

working X hours a day the real capacity is not equal to N*X hours. Further-

more, the work-load needs to be estimated as, for example, in terms of size

32

of requirements. An estimation error would lead to an invalid analysis.

In summary, the practitioners perceived the method as useful in achieving

a more lean software process. Based on the static validation and further

discussions with the practitioners an implementation plan for the method

was created (see Figure 9).

Inventory 1: Requirements (Status: Completed)
• Flow of requirements, Cumulative Flow Diagrams

Inventory 2: Faults
• Apply SPI-LEAM requirements concept on Maintenance /

internal (Project) flow of reported faults

Inventory 3 and 4: Fault Slip Through

and Test Cases
• Inventories for testing activities

• Show Relation between test input and efficiency

Inventory 5: PC Flow

• Number of PCs to be implemented

Platform for Req. Flow
• Capture Inventories and present in database

• Remove existing documentation

•Transparancy of status for each requirement

6

2

5

4

3

1

Dashboard

• Integrate Inventories (Holistic View)

Figure 9: Implementation Steps of SPI-LEAM

The first two steps are related to requirements inventories. The rational

for starting with requirements was that implemented requirements provide

value to the customer and thus are of highest priority in the implementation

of SPI-LEAM.

The first step of the implementation plan is the creation of a web-platform

to capture the requirements flow. The platform lists the requirements in each

phase and allows the practitioners to move requirements between phases.

When a requirement is moved from one phase to another the date of the

33

movement is registered. Thus, the inventory level at any point in time for

each phase of development can be determined.

The second step is the analysis of the requirements level by measuring

the number of requirements in different phases. Complementarity to the in-

ventory levels the data is also the basis to conduct analysis to get further

insights into how requirements evolve during the development life-cycle. Cu-

mulative flow diagrams were used to visualize the flow and throughput of

development. In addition, the time requirements stayed in different phases

were illustrated in the form of box-plots. The first and second steps have

been completed and preliminary data collected in these step is presented in

Section 4.2.

In the third step the number of faults is measured in a similar manner

as the requirements flow. The company captures the flow of fixing the faults

(e.g. number of faults registered, in analysis, implementation, testing, and

regression testing). With this information one can calculate the number of

requirements in different phases and construct cumulative flow diagrams as

well. The flow of fixing faults is separated between internal (faults discovered

by tests run by the company) and external (faults reported by the customer).

The fourth step in the staircase is concerned with measuring the number

of test cases and the fault-slip through. An analysis for a combination of

these inventories is shown in Figure 7.

The fifth step measures the number customization requests by customers.

The development of customization follows an own flow which can be analyzed

in-depth in a similar fashion as the flow of requirements (Step 2) and faults

(Step 3).

34

In the last (sixth) step a dashboard is created which integrates the anal-

ysis of the individual inventory measurements on a high level (i.e. capacity

vs. actual level of inventory) in form of a radar chart. To conduct an in-

depth analysis a drill-down is possible. For example, if the inventory for

requirements is high then one can investigate the requirements flow in more

detail.

4.2. Preliminary Data

The requirements inventory was measured for a large-scale telecommuni-

cation product developed at Ericsson AB. The product was written in C++

and Java and consisted of over five million lines of code (LOC). Figure 10

shows an individual and moving range (I-MR) chart for the inventory of re-

quirements in implementation (design, coding, and testing) over time. Due

to confidentiality reasons no actual values can be reported. The continuous

line in the figure shows the mean value while the dashed lines show the lower

and upper control limits. The upper and lower control limits are +/− two or

three standard deviations away from the mean. A value that is outside the

control limits indicates an instability of the process. The graph on the top of

Figure 10 shows the individual values, while the graph on the bottom shows

the moving range. The moving range is calculated as MR = |Xi −Xi−1|,

i.e. it shows the size of the change in X between data point i and data point

i− 1.

The figure for the individual values shows a large area of data points out-

side the upper control limit. In this time period the data indicates a very

high inventory level. When presenting the inventory data to a development

unit the participants of the unit confirmed that development was fully uti-

35

Observation

In
d
iv
id
u
a
l
V
a
lu
e

Observation

M
o
v
in
g
 R
a
n
g
e

1

1
1

1
1

1
11

1
1

111

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

Figure 10: Inventory of Requirements in Implementation over Time (Observation = Time)

lized and people felt overloaded. This also meant that no other activity (e.g.

refactoring) did take place besides the main product development. The op-

posite can be observed on the right-hand side of the figure where the data

points are below the control limit. In this situation most of the requirements

passed testing and were ready for release, which meant that the development

teams idled from a main product development perspective. This time was

used to solely concentrate on activities such as refactoring. To determine

the capacity of development (and with that acceptable inventory levels) we

believe it is a good and practical approach to visualize the inventories and

discuss at which times the development teams felt overloaded or underloaded.

It is also interesting to look at the figure showing the moving range. A

large difference between two data-points is an indication for batch-behavior,

meaning that many requirements are handed over at once. Large hand-overs

36

also constitute a risk of an overload-situation. From a lean perspective one

should aim at having a continuous and steady flow of requirements into the

development, and at the same time delivering tested requirements continu-

ously.

Collecting inventory data in a continuous manner also enables the use of

other lean analysis tools, such as cumulative flow diagrams [32, 33]. They

allow to analyze the requirements flow in more detail with respect to through-

put and cycle times. The graph in Figure 11 shows a cumulative flow diagram

which is based on the same data as the control charts. The top line repre-

sents the total number of requirements in development. The line below that

shows the number of requirements that have been detailed and handed over

to implementation. The next line shows the number of requirements handed

over to node test, and so forth. The difference between two lines at a certain

point in time shows the inventory. The lines themselves represent hand-overs.
All CS

Time

C
u

m
l.

 N
o

.
o

f
R

e
q

.

Req.

Des./Impl.

Node Test

Sys.-Test

Release

Delivery

Figure 11: Cumulative Flow Diagram

Cumulative flow diagrams provides further information about the de-

velopment flow that can be used complementary to the analysis of inven-

37

tory levels shown in Figure 10. The cumulative flow diagram shows veloc-

ity/throughput (i.e. the number of requirements handed over per time unit).

Additionally it provides information about lead-times (e.g. the majority of

the requirements is handed over to the release after 2/3 of the overall de-

velopment time has passed). The batch behavior from the moving range

graph can also be found in the cumulative flow diagram (e.g. large hand-

over from node-test to system test in the middle of the time-line). A detailed

account of measures related to development flow and the use of cumulative

flow diagrams in the software engineering context can be found in [34].

4.3. Improvements Towards Lean

Based on the observations from measuring the requirements flow the com-

pany suggested a number of improvements to arrive at a more lean process.

Two examples are provided in the following:

• From Push to Pull: A reason for the overload situation is that the

requirements are pushed into development by allocating time-slots far

ahead. Due to the analyses the desire is to change to a pull-approach.

This should be realized by creating a buffer of prioritized requirements

ready for implementation from which the development teams can pull.

Thereby, the teams get more control of the work-load which is expected

to help them in delivering in a more continuous manner.

• Intermediate Release Versions: Before having the final delivery of the

software system with agreed scope intermediate releases should be es-

tablished that that have the quality to be potentially released to the

38

customer. Thereby the company wants to achieve to 1) have high qual-

ity early in development, and 2) have a motivator to test and integrate

earlier.

It is important to emphasize that only a part of SPI-LEAM has been

implemented so far. A more holistic analysis will be possible when having

the other inventory measurements available as well. One interesting analysis

would be to plot all inventories in graphs such as the ones presented in Figures

10 and 11 and have a look at them together. For example, an overload in the

requirements flow would explain a slow-down in the maintenance activities.

5. Discussion

5.1. Comparison with Related Work

A comparison with the related work allows to make two observations

which indicate the usefulness of SPI-LEAM as an extension over existing

measurements in the lean context.

First, Morgan and Liker [16] identified a mapping between root causes

and waste. An interesting implication is that the occurrence of waste in fact

points to the absence of lean practices. In consequence SPI-LEAM is a good

starting point to identify wastes in development continuously. Based on the

results provided by SPI-LEAM an undesired behavior of the development

becomes visible and can be further investigated with techniques such as root

cause analysis. This can be used as a motivation for management to focus

on the implementation of lean practices. The transparency of the actual

situation can also provide insights helping to overcome hindering factors,

such as the ones reported in [17].

39

Secondly, Oppenheim [18] pointed out that it is important to not only

focus on speeding up the development to achieve better cycle times for the

expense of quality. To reduce this risk we proposed to provide inventory

measurements that can be used to evaluate cycle times and throughput (see

cumulative flow diagrams) and inventories related to quality together (flow of

fixing faults). If, for example, cycle time is shortened by reducing testing this

will show positively in the cycle time, but negatively in the fault-slip-through

and the number of faults reported by the customers.

5.2. Practical Implications

The flexibility of the method makes it usable in different contexts. That is,

the method allows companies to choose inventories that are relevant for their

specific needs. Though, the only restriction is that at least one inventories

should be considered that represents the quality dimension. The risk of

optimizing measures on the cost of quality is thereby reduced. In addition,

we presented different alternatives of analysis approaches (hard systems, soft

systems, evolutionary systems) that companies can use to predict the effect

of improvement actions.

Criticism was raised regarding the determination of capacity/work-load

by the practitioners. In order to determine the right work-load, simulation

can be used, in particular queuing networks and discrete event simulation

(a theoretical description can be found in [35, 36]). An example of the ap-

plication of discrete event simulation with queuing networks to determine

bottlenecks in the software engineering context is shown in [27]. As men-

tioned earlier, there are also alternative approaches that can be used which

are easier and faster to realize (see description of soft systems in Section

40

3.3.3). Another approach is to plot inventory levels based on historical data

and have a dialog with development teams and managers about the workload

situation over time.

The practitioners also perceived the analysis and prediction of the effect

of improvement actions (as shown in Figure 8) as theoretical, making them

feel that the method might not be practical. However, this was due to the

way of illustrating the movement between states as a directed graph. In

practice, one would provide a view of the inventory levels over time illus-

trating them as a control chart/cumulative flow diagram as shown in Section

4.2. Doing so allowed the practitioners to identify a departure from lean

practices. For example, the cumulative flow diagram derived from the in-

ventory data showed that the system was not built in small and continuous

increments. This observation helped to raise the need for a more continuous

flow of development and led the company to take actions accordingly (see

Section 4.3). In other words, SPI-LEAM provides facts that allow a stronger

position when arguing why specific practices should receive more attention.

Considering the feedback from industry on the method it seems a promis-

ing new approach to continuously improve software processes to become more

lean. As the method is an instantiation of the QIP one can leverage of the

benefits connected to that paradigm (e.g. having a learning organization due

to keeping track of the experiences made, see last step in Figure 1).

5.3. Research Implications

The related work shows that lean software engineering has been evaluated

as a whole, i.e. it is not clear which tools have been applied. Furthermore,

the benefit of single tools from the lean tool-box have not been evaluated

41

so far to learn about their benefits in software engineering contexts. Such

applications also show how the methods have to be tailored (see, for example,

capacity discussion in Section 5.2). In general there are only few studies in

software engineering and more studies are needed which describe the context

in detail in which lean was applied, as well as how lean was implemented in

the companies.

Concerning SPI-LEAM, there is a need to evaluate what kind of improve-

ment decisions are proposed and implemented based on the measurement

results derived by the method. This has to be followed up in the long run

to see whether continuous improvements will be achieved in terms of making

the software process more lean. In addition, SPI-LEAM has to be applied in

different contexts to learn what kind of inventories are the most relevant in

specific contexts. For example, how does SPI-LEAM differ between different

agile processes (SCRUM or eXtreme Programming) and different complexi-

ties (large products with many development teams vs. small products with

few development teams).

In conclusion, we see a high potential of lean practices improving software

engineering. However, there is very little work done in this area so far.

6. Conclusion

This paper presents a novel method called Software Process Improvement

through Lean Measurement (SPI-LEAM). The goals of the method are to 1)

enable continuous software process improvement leading to a lean software

process; and 2) avoid problems related to resistance of change by improving

in a continuous manner. The method combines the quality improvement

42

paradigm with lean measurements.

The method is based on measuring inventories representing different di-

mensions of software development (normal development work, extra work,

and software quality). It was exemplified how the method is used. Feed-

back from industry and the discussion of the method leads to the following

conclusions:

• SPI-LEAM is flexible as it allows companies to choose inventories and

analysis methods fitting their needs in the best way. Thus, the method

should be applicable in many different contexts.

• The practitioners who reflected on the method agreed on how we ap-

proached the problem. They, for example, observed that the inventories

should be below the capacity level. Furthermore, they agreed on the

need to conduct a combined analysis of inventories to have a complete

view of the current situation. That is, the risk of optimizing measures

is drastically reduced.

In future work the impact of the method on software process improvement

activities is needed. The method focused on the overall process life-cycle.

However, the ideas could be useful for a team working on a specific develop-

ment task, such as the visualization of throughput for a single team, and a

measure of cycle-time. This allows each team to determine its own capability

level. Furthermore, the analysis of related work showed that generally more

research on lean tools is needed.

43

References

[1] CMMI-Product-Team, Capability maturity model integration for devel-

opment, version 1.2, Tech. rep., CMU/SEI-2006-TR-008 (2006).

[2] V. R. Basili, Quantitative evaluation of software methodology, Tech.

rep., University of Maryland TR-1519 (1985).

[3] V. R. Basili, S. Green, Software process evolution at the sel, IEEE Soft-

ware 11 (4) (1994) 58–66.

[4] D. Cumbo, E. Kline, M. S. Bumgardner, Benchmarking performance

measurement and lean manufacturing in the rough mill, Forest Products

Journal 56 (6) (2006) 25 – 30.

[5] J. P. Womack, D. T. Jones, Lean thinking : banish waste and create

wealth in your corporation, Free Press Business, London, 2003.

[6] S. Shingo, Study of ”Toyota” production system from the industrial

engineering viewpoint, Japanese Management Association, 1981.

[7] M. Poppendieck, T. Poppendieck, Lean Software Development: An Ag-

ile Toolkit (The Agile Software Development Series), Addison-Wesley

Professional, 2003.

[8] P. Middleton, Lean software development: Two case studies, Software

Quality Journal 9 (4) (2001) 241–252.

[9] K. Petersen, C. Wohlin, D. Baca, The waterfall model in large-scale

development - state of the art vs. industrial case study, in: Proceed-

44

ings of the 10th International Conference on Product Focused Software

Development and Process Improvement, 2009, p. in submission.

[10] T. Morgan, Lean manufacturing techniques applied to software devel-

opment, Master’s thesis, Master Thesis at Massachusetts Institute of

Technology (April 1998).

[11] P. Middleton, A. Flaxel, A. Cookson, Lean software management case

study: Timberline inc, in: Proceedings of the 6th International Confer-

ence on Extreme Programming and Agile Processes in Software Engi-

neering (XP 2005), 2005, pp. 1–9.

[12] R. T. Pascale, Managing on the edge : how the smartest companies use

conflict to stay ahead, Simon and Schuster, New York, 1990.

[13] T. Gorschek, C. Wohlin, Requirements abstraction model, Requir. Eng.

11 (1) (2006) 79–101.

[14] G. I. U. S. Perera, M. Fernando, Enhanced agile software development

hybrid paradigm with lean practice, in: Proceedings of the International

Conference on Industrial and Information Systems (ICIIS 2007), 2007,

pp. 239–244.

[15] E. Parnell-Klabo, Introducing lean principles with agile practices at a

fortune 500 company, in: Proceedings of the AGILE Conference (AGILE

2006), 2006, pp. 232–242.

[16] J. M. Morgan, J. K. Liker, The Toyota product development system:

integrating people, process, and technology, Productivity Press, New

York, 2006.

45

[17] C. Karlsson, P. Ahlströhm, The difficult path to lean product develop-

ment, Journal of Product Innovation Management 13 (4) (2009) 283–

295.

[18] B. W. Oppenheim, Lean product development flow, Systems Engineer-

ing 7 (4) (2004) 352–376.

[19] B. Maskell, B. Baggaley, Practical lean accounting: a proven system for

measuring and managing the lean enterprise, Productivity Press, 2004.

[20] V. R. Basili, The experience factory and its relationship to other quality

approaches, Advances in Computers 41 (1995) 65–82.

[21] C. Jones, Applied software measurement: assuring productivity and

quality, McGraw-Hill, New York, 1997.

[22] L.-O. Damm, L. Lundberg, C. Wohlin, Faults-slip-through - a concept

for measuring the efficiency of the test process, Software Process: Im-

provement and Practice 11 (1) (2006) 47–59.

[23] Çigdem Gencel, O. Demirörs, Functional size measurement revisited,

ACM Transactions on Software Engineering and Methodology 17 (3).

[24] X. Zhu, B. Zhou, L. Hou, J. Chen, L. Chen, An experience-based ap-

proach for test execution effort estimation, in: Proceedings of the 9th

International Conference for Young Computer Scientists (ICYCS 2008),

2008, pp. 1193 – 1198.

[25] M. Lindvall, K. Sandahl, Traceability aspects of impact analysis in

46

object-oriented systems, Journal of Software Maintenance 10 (1) (1998)

37–57.

[26] A. D. Lucia, E. Pompella, S. Stefanucci, Assessing effort estimation mod-

els for corrective maintenance through empirical studies, Information &

Software Technology 47 (1) (2005) 3–15.

[27] M. Höst, B. Regnell, J. N. och Dag, J. Nedstam, C. Nyberg, Exploring

bottlenecks in market-driven requirements management processes with

discrete event simulation, Journal of Systems and Software 59 (3) (2001)

323–332.

[28] L.-O. Damm, L. Lundberg, C. Wohlin, A model for software rework

reduction through a combination of anomaly metrics, Journal of Systems

and Software 81 (11) (2008) 1968–1982.

[29] J. P. V. Gigch, System design modeling and metamodeling, Plenum

Press, New York, 1991.

[30] P. Donzelli, G. Iazeolla, Hybrid simulation modelling of the software

process, Journal of Systems and Software 59 (3) (2001) 227–235.

[31] T. Gorschek, P. Garre, S. Larsson, C. Wohlin, A model for technology

transfer in practice, IEEE Software 23 (6) (2006) 88–95.

[32] D. G. Reinertsen, Managing the design factory: a product developers

toolkit, Free, New York, 1997.

[33] D. Anderson, Agile management for software engineering: applying the

theory of constraints for business results, Prentice Hall, 2003.

47

[34] K. Petersen, C. Wohlin, Measuring the flow of lean software develop-

ment, in submission, http://kaipetersen79.googlepages.com/sSPE.pdf.

[35] G. Bolch, S. Greiner, H. D. Meer, K. S. Trivedi, Queueing networks and

Markov chains: modeling and performance evaluation with computer

science applications, 2nd Edition, Wiley, Hoboken, N.J., 2006.

[36] C. G. Cassandras, S. Lafortune, Introduction to discrete event systems,

Kluwer Academic, Boston, 1999.

48

Kai Petersen is an industrial PhD student at Ericsson AB and Blekinge

Institute of Technology. He received his Master of Science in Software En-

gineering (M.Sc.) from Blekinge Institute of Technology. Thereafter, he

worked as a research assistant at University of Duisburg Essen, focusing on

software product-line engineering and service-oriented architecture. His cur-

rent research interests are empirical software engineering, software process

improvement, lean and agile development, and software measurement.

Claes Wohlin is a professor of software engineering and the Pro Vice

Chancellor of Blekinge Institute of Technology, Sweden. He has previously

held professor chairs at the universities in Lund and Linköping. His research

interests include empirical methods in software engineering, software met-

rics, software quality, and requirements engineering. Wohlin received a PhD

in communication systems from Lund University. He is Editor-in-Chief of

Information and Software Technology and member of three other journal ed-

itorial boards. Claes Wohlin was the recipient of Telenors Nordic Research

Prize in 2004 for his achievements in software engineering and improvement

of reliability for telecommunication systems.

49

