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SUMMARY

As software systems evolve over a series of releases, it becomes important to know

which components are stable compared to components that show repeated need for

corrective maintenance. The latter is a sign of code decay. Code decay can be due

to the deterioration of a single component. In this case it manifests itself in repeated

and increasing problems that are local to the component. A second type of code

decay is due to repeated problems that become increasingly di�cult to �x and are

related to interactions between components. That is, components are repeatedly fault-

prone in their relationships with each other. The latter requires repairs in multiple

components and is a sign of problems with the software architecture of the system.

Software architecture problems are by far more costly to �x and thus it is very desirable

to identify potential architectural problems early and to track them across multiple

releases. To do this, we adapt a reverse architecting technique to defect reports

of a series of releases. Fault relationships among system components are identi�ed

based on whether they are involved in the same defect report, and for how many

defect reports this occurs. There are degrees of fault-coupling between components

depending on how often these components are involved in a defect �x. After these

fault-coupling relationships between components are extracted, they are abstracted

to the subsystem level. We also identify a measure for fault cohesion (i.e. fault-

proneness of components locally.) The resulting fault architecture �gures show for each

release what its most fault-prone relationships are. Comparing across releases makes it

possible to see whether some relationships between components are repeatedly fault-

prone, indicating an underlying systemic architecture problem. We illustrate our

technique on a large commercial system consisting of over 800 KLOC of C, C++, and

microcode. Copyright c2000 John Wiley & Sons, Ltd.
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1 Introduction

As a system evolves and goes through a number of maintenance releases [1], it naturally
inherits functionality and characteristics from previous releases [2, 3], and becomes a legacy
system. As new functionality and features are added, there is a tendency towards increased
complexity. This may impact the system's maintainability. This makes it important to
track the evolution of a system and its components, particularly those components which
are becoming increasingly di�cult to maintain as changes are made over time. Increasing
di�culty in further evolution and maintenance is a sign of code decay.

The identi�cation of these components serves two objectives. First, this information can
be used to direct e�orts when a new system release is being developed. This could mean
applying a more thorough development process, or assigning the most experienced developers
to these di�cult components. Secondly, the information can be used when determining
which components need to be re-engineered at some point in the future. Components that
are di�cult to maintain are certainly candidates for re-engineering e�orts.

Early decay identi�cation is desirable so that steps can be taken to prevent further degrada-
tion. The question is how to identify this decay and what to do to stop it. A major source of
information that is commonly available are defect reports. Defect reports are written when
developers, testers, or users, encounter defects during system development, test, or use. De-
fect reports usually contain information about the nature of the defect and how it was �xed
(i. e. the underlying fault(s) that had to be removed). Fault removal can necessitate changes
in one or more components. If changes are local to a component, the component's defect is
said to have cohesion. By contrast, if fault removal involves changes in multiple components,
the defect shows coupling. This concept of looking at a defect as either local to a compo-
nent or as coupling components with regards to defect removal is analogous to describing
structure or architecture of software [4, 5]: Software architecture consists of a description
of components and their relationships and interactions, both statically and behaviorally [5].
Problems and possible architectural decay can be spotted via defects related to relationships
and interactions of the components. A software architecture decay analysis technique must
identify and highlight problematic components (we propose to do this via defect cohesion
measurement) and relationships (we propose to do this via defect coupling measurement).

Code decay can be due to the deterioration of a single component. In this case it manifests
itself in repeated and increasing problems that are local to the component. A second type
of code decay is due to repeated problems that become increasingly di�cult to �x and are
related to interactions between components. That is, components are repeatedly fault-prone
in their relationships with each other. The latter requires repairs in multiple components
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and is a sign of problems with the software architecture of the system. Software architecture
problems are by far more costly to �x and thus it is very desirable to identify potential
architectural problems early and to track them across multiple releases.

Decay analysis identi�es both components and relationships between components that are
problematic. To assess potential decay that is local to a component, we de�ne a defect
cohesion measure at the component level. To determine decay related to faulty relation-
ships between components, we de�ne a defect coupling measure between components. High
measures in either indicate problems, but of a di�erent sort. High defect cohesion mea-
sures identify components that are broken in their functionality, while high defect coupling
measures highlight broken relationships between components.

There are choices in which cohesion and coupling measures to use. One cohesion measure
is to use the number of defects written against a component. This technique was used by
Ohlsson et al. [6] to identify the most fault-prone components across successive releases.
This approach has also been used with simple coupling measures based on common code
�xes as part of the same defect report [7]. We provide a variant of this cohesion measure
to more clearly distinguish defect �xes that involve single versus multiple �le changes in
a component. Similarly, a variety of coupling measures can be identi�ed. [7] used simple
coupling measures based on common code �xes a part of the same defect report. [8] used
a defect coupling measure that is sensitive to the number of �les that had to be �xed in
each component that was identi�ed as fault-prone through a defect cohesion measure. These
defect cohesion and coupling measures can be computed for all components and components
relationships that contain faults. However, usually only the most fault-prone components
and component relationships are of concern, since they represent the worst problems and the
biggest potential for code decay. We use the word code decay to denote code that, in some
way, is becoming worse and worse for each software release, raising concerns about lack of
maintainability in the future.

With this in mind, the primary interest is to identify components and component relation-
ships that exhibit faults the most often, i. e. with the highest defect cohesion and defect
coupling measures. Thresholds need to be determined to distinguish whether components
and component relationships are fault-prone or not.

In this paper, we investigate ways

� to identify components and relationships between components that are fault-prone.
This can be done either through an existing, up-to-date software architecture document
in conjunction with defect reports, or, in its absence, through reverse architecting
techniques such as [9, 10, 11, 12, 13, 14, 15, 16]. This paper tries to deal with the
latter situation: an obsolete or missing software architecture document and the need
for some reverse architecture e�ort. Reverse architecting in this context refers to the
e�ort of identifying a system's components and component relationships without the
aid of an existing architecture document.

� to measure defect cohesion and defect coupling for the components and component
relationships identi�ed.
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� to set thresholds when distinguishing between fault-prone and not fault-prone com-
ponents and component relationships. The components and component relationships
that are fault-prone form the part of the software architecture that is fault-prone. This
is called the fault architecture.

Section 2 reports on existing work related to identifying (repeatedly) fault-prone components.
It also summarizes existing classes of reverse architecting approaches. Few researchers have
tried to combine the two [17, 18]. We preferred two steps rather than a combination, because
we wanted to use the reverse architecting approach both for building a fault architecture and
a reverse architecture. Section 3 details our approach. Section 4 reports on its application
to a sizable embedded system across 4 releases. The results show identi�able persistent
problems with a subset of the components and relationships between them, indicating sys-
temic problems with the underlying architecture. Section 5 draws conclusions and points
out further work.

2 Background

2.1 Tracking and Predicting Fault-prone Components

It is important to know which software components are stable versus those which repeatedly
need corrective maintenance, because of decay. Decaying components become worse as they
evolve over releases. Software may decay due to adding new functionality with increasing
complexity as a result of poor documentation of the system. Over time decay can become
very costly. Therefore it is necessary to track the evolution of systems and to analyze causes
for decay.

Ash et al. [20] provide mechanisms to track fault-prone components across releases. Schnei-
dewind [21], Khoshgoftaar et al. [22] provide methods to predict whether a component will
be fault-prone. [6, 7] combine prediction of fault-prone components with analysis of decay
indicators. It ranks components based on the number of defects in which a component plays
a role. The ranks and changes in ranks are used to classify components as green, yellow and
red (GYR) over a series of releases. Corrective maintenance measures are analysed via Prin-
cipal Components Analysis (PCA) [23]. This helps to track changes in the components over
successive releases. Box plots are also used to visualize the corrective maintenance measures
and to identify how they di�er between releases.

2.2 Reverse Architecture

Reverse architecting is a speci�c type of reverse engineering. According to [24], a reverse
engineering approach should consist of the following:

1. Extraction: This phase extracts information from source code, documentation, and
documented system history (e. g. defect reports, change management data).
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2. Abstraction: This phase abstracts the extracted information based on the objectives
of the reverse engineering activity. Abstraction should distill the possibly very large
amount of extracted information into a manageable amount.

3. Presentation: This phase transforms abstracted data into a representation that is
conducive to the user.

Objectives in why code is reverse architected drives what is extracted, how it is abstracted,
and how it is presented. For example, if the objective is to reverse architect with the asso-
ciated goal to re-engineer (let's say into an object oriented product), architecture extraction
is likely based on identifying and abstracting implicit objects, abstract data types, and their
instances. This is the case with [9, 12, 13, 15]. Alternatively, if it can be assumed that
the code embodies certain architectural cliches, an associated reverse architecting approach
would include their recognition. [11] describes an environment that uses recognizers that
know about architectural cliches to produce di�erent architectural views of the system.

Other ways to look at reverse architecting a system include using state machine information
[18], or release history [17]. CAESAR [17] uses the release history for a system. It tries to
capture logical dependencies instead of syntactic dependencies by analyzing common change
patterns for components. This allows identi�cation of dependencies that would not have
been discovered through source code analysis. It requires data from many releases. This
method could be seen as a combination of identi�cation of problematic components and
architectural recovery to identify architectural problems.

If we are interested in a high level fault architecture of the system, it is desirable not to
extract too much information during phase 1, otherwise there is either too much information
to abstract, or the information becomes overwhelming for large systems. This makes the sim-
pler approaches more appealing. In this regard, we found Krikhaar's approach particularly
attractive [14]. The approach consists of three steps:

1. de�ning and analyzing the import relation between �les. [14] de�nes the import relation
via #include statements in the source code. Each �le is also assigned to a subsystem
(in e�ect creating a part-of relation). The import relation at the subsystem level is
then derived as follows: if two �les in di�erent subsystems have an import relationship,
the two subsystems to which the �les belong have one as well.

2. analyzing the part-of hierarchy in more general terms (such as clustering, levels of
subsystems). This includes de�ning the part-of relations at each level. These usually
will be de�ned di�erently for each level. It also includes further de�nition of possible
import relations and their abstractions.

3. analyzing use relations at the code level. Examples include call-called by relationships,
de�nition versus use of global or shared variables, constants and structures. Analogous
to the other steps, Krikhaar [14] also determines the part-of relation and abstracts use
relations to higher levels of abstraction.
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Within this general framework, there are many options to adapt it to a speci�c reverse ar-
chitecting objective [10]. For example, Bowman et al. [25] also �ts into his framework: the
reverse architecting starts with identifying components as clusters of �les. Import relations
between components are de�ned through common authorship of �les in the components
(ownership relation). Use relationships are de�ned as calls-called-by relationships (depen-
dency relation) of functions in components. Bowman et al. [25] also includes an evaluation
of how well ownership and dependency relationships model the conceptual relationship.

We developed our adaptation based on the need to represent defect relationships between
components and the ability to focus on the most problematic parts of the architecture.

2.3 Fault Architecture

von Mayrhauser et al. [8] combined the concepts of fault-prone analysis and reverse architect-
ing to determine and analyze fault-architecture of software across releases. Components were
identi�ed as fault-prone based on the number of defect reports. Component relationships
were fault-prone depending on how often a defect repair involved changes in �les belong-
ing to multiple components. These measures were ultimately used to rank components and
component relationships with respect to how fault-prone they are. The top 25% in either
ranking were considered fault-prone.

Components are identi�ed based on the physical architecture (the directory structure). The
directory structure of the fault-prone components (parts that are not fault-prone are omitted)
is de�ned as the Fault Component Directory Structure. The Fault Architecture at the
component level shows all components and component relationships that are identi�ed as
fault-prone. The Fault Architecture at the subsystem and system level is derived through
abstracting the component level fault architecture. Multiple release analysis tracks defect
reports for components across releases (i. e. their defect history).

The measures used to identify fault-prone components and fault-prone component relation-
ships are very simple. They do not take into account that defects may di�er in how much
change is required to repair the underlying fault(s). When identifying fault-prone component
relationships, the method only identi�es components as having fault-prone relationships if
these relationships rank in the top 25%. This omits components in the fault architecture
whose fault relationships rank lower, but who may have a large number of them.

It is unclear whether this simple approach is su�cient or whether a more sophisticated set
of measures would better identify the nature of architectural problems. Further, it might
be useful to investigate setting thresholds for fault-proneness as a function of the measures
obtained, rather than as a function of rank.

3 Approach

The approach consists of the following steps:
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� Determine locally fault-prone components and their Fault Component Directory Struc-
ture.

� Determine components in fault-prone relationships and the Fault Architecture at the
Component level.

� Abstract the Fault Architecture to the subsystem and system level.

� Perform Multi-release Analysis.

The basic strategy uses defect cohesion measures for components and defect coupling mea-
sures between components to assess how fault-prone components and component relation-
ships are. If the objective is to concentrate on the most problematic parts of the software
architecture, these measures are used with thresholds to identify

(a) the most fault-prone components only (setting a threshold based on the defect cohesion
measure);

(b) the most fault-prone components relationships (setting thresholds based on two defect
coupling measures).

3.1 Locally Fault-prone Components and the Fault Component Directory Struc-

ture

von Mayrhauser et al. [8] used the number of defect reports related to a component as a
very simple measure of defect cohesion. This measure did not di�erentiate whether a defect
in a component required modifying one �le in a component, or dozens. If we assume that a
defect is more complex to repair when its repair involves more of the component's �les, we
need a more sophisticated defect cohesion measure. We assume that defect reports include
information about how many �les in the component had to be changed to repair the fault(s)
related to a given defect report. Further, we assume that for each change in a �le, all other
�les that were changed to repair the defect had to be analyzed (to assess the impact of a
change in one �le on all the other changes). Graphically, this would lead to a fully connected
graph (nodes are �les, arcs are change relationships between �les). This approach will sharply
distinguish between single and multiple �le changes related to a defect repair. We decided
not to normalize this measure since in most systems components di�er widely in size and
how many �les they contain. Further, we are not so much interested in the actual values of
the cohesion measure, but in what relative ranking it determines between the components.
This simpli�es issues related to validation of the measures [19].

The defect cohesion for measuring the defect relationships between �les of the same compo-
nents is de�ned as follows:

Co<C> =

( P
n

di=1

fdi
(fdi

�1)

2
for fdi > 1

1 for fdi = 1:
(1)
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fdi is the number of �les in component C that had to be changed to repair defect di; n is
the number of defects. This provides an indication of local fault-proneness. This measure
would include components as fault-prone that are only involved in a few defects, but where
each defect repair required changing a large number of �les. This provides a ranking of
components with respect to how locally fault-prone they are.

For purposes of the case study, we classi�ed a component as problematic when it is in the
most fault-prone quartile in a release. Components are de�ned as collections of �les in the
same directory. Thus the directory structure of the software can be used as the \part-of"
relationship. Fault-prone components are illustrated as leaves in this directory structure.
We denote this as a Fault Component Directory Structure. Subsystems are de�ned through
the directory structure.

3.2 Components in Fault-prone Relationships and the Fault Architecture at the

Component Level

The next step is to develop the Fault Architecture. We adapted an existing reverse archi-
tecting technique [14] to identify the fault architecture of a system and to highlight both
nature and magnitude of the architectural problem. Two or more components are related, if
their �les had to be changed in the same defect repair (i.e. in order to correct a defect, �les
in all these components needed to be changed). Defect relationships between components
are measured with a defect coupling measure. For any two components C1 and C2, the
relationship measure Re<C1;C2>

is de�ned as:

Re<C1;C2>
=

nX
i=1

C1di
� C2di

C1 6= C2 (2)

where C1di
and C2di

stand for the number of �les in component C1 and C2 that had to be
�xed in defect di; n is the number of defects whose �xes necessitated changes in components
C1 and C2.

In addition, we need to de�ne how to set a threshold for fault-proneness with respect to
relationships between components. There are two reasons, why a component C can be
fault-prone with respect to relationships:

1. the defect coupling measure is high for a particular pair of components < C;Ci >.

2. none of the defect coupling measures are high, but there are a large number of them
(the sum of the defect coupling measures is large).

The second situation prompted us to determine a threshold for fault-prone relationships
between components based on the sum of the defect coupling measures for a component:

TRC =
mX
i=1

Re<C;Ci>
C 6= Ci (3)
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wherem is the number of components other than C, Re<C;Ci
> is the defect coupling measure

between C and Ci.

The threshold for including a component in the fault architecture is set as 10% of the highest
TRC measure. The threshold for including a fault relationship arc in the architecture is set
at 10% of the highest Re<C;Ci>

. This means that we are setting the threshold about one
order of magnitude lower than the highest value for TRC and Re<C;Ci>

. Components that
have been agged as fault-prone for the lowest level nodes of the Fault Component Directory

Structure. Components and fault relationships that have been identi�ed as fault-prone via
the two defect coupling measures form the nodes and arcs of the lowest level of the Fault

Architecture. The Fault Architecture Diagram may have nodes to represent components
with a high TRC measure, but low Re<C;Ci>

measure. In this case, the node shows no
fault-relationship arcs, to denote situation 2 above.

3.3 Fault Architecture at the Subsystem and System Level

The fault relationship can be abstracted to the subsystem and system level: Two subsystems
are related, if they contain components that are related. This represents Krikhaar's \lift"
operation [14]. Let aa, bb be the names of two subsystems of the system to be analyzed.
Then the the defect coupling measure between these two subsystems aa and bb is the sum
of coupling measures between components in aa and components in bb:

Rsub<aa;bb> =
X
Rset

Re<Caa;Cbb>
(4)

where Rset = f(Caa; Cbb)jCaa 2 aa [ Cbb 2 bbg.

Similarly, this method can be applied when going from the subsystem to the system level.
Changes in such patterns, or persistent fault relationships between components, across re-
leases, is an indicator of systemic problems between components and thus architecture.

3.4 Multi-release Analysis

The result of this phase is a series of Fault Architecture Diagrams, one for each release.
These results are also used to update the Fault Component Directory Structure as follows:
components in bold face appear in the Fault Architecture Diagrams. These are components
with fault-prone relationships to others in at least one release. Bold components are also
annotated with the release identi�ers in which they were considered relationship fault-prone.
Non-bold components are internally fault-prone in at least one release, but do not show fault
relationships with other components.

To investigate further the nature of continued problems between components, we also aggre-
gate these diagrams into a Cumulative Release Diagram. The nodes represent components
that occur in at least one Fault Architecture Diagram. Two nodes are related (i.e. have an
arc between them), if there is a fault relationship between corresponding nodes in at least
one Fault Architecture Diagram. The arcs are annotated as follows: if Fault Architecture
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Table 1: Number of Releases in which Components were Fault-Prone

Times fault-prone 0 1 2 3 4
Number of components 63 34 22 9 2

Diagrams for releases n and m show an arc between components Ci and Cj, then the Cumu-
lative Release Diagram's arc between Ci and Cj is annotated with Tn;m (for release transition
n to m). This highlights repeatedly problematic relationships in the Fault Architecture.

4 Case Study

4.1 Environment

We applied this technique to a large embedded mass storage system of about 800 KLOC of
C, C++, and microcode in 130 software components. Each component contains a number
of �les. We studied four releases. The data is based on defect/�x reports or source change
notices (SCN). Every report indicates a problem that had to be corrected.

4.2 Identi�cation of Fault-prone Components and the Fault Component Direc-

tory Structure

To extract locally fault-prone components we decided to rank all components based on the
defect cohesion measure and then identify the top 25% of the ranked components as locally
fault-prone. In case of ties in rank that would cause more than 25% of the components to
be included, the smaller set was chosen. Table 1 shows to which degree components were
repeatedly fault-prone. For example, 63 components were never identi�ed as fault-prone
while 2 were identi�ed as fault-prone in all four releases. Components that were fault-prone
in at least one release are included in the Fault Component Directory Structure (see Figure
1). We refer to a component as a collection of �les in the same directory.

4.3 Analysis of Fault-prone Relationships

This analysis extracts the fault architecture of the system. Two fault-prone components
have a fault relationship between them if they each contain �les that had to be repaired
during corrective maintenance for the same defect report. All data is stored in a database
which contains records with information for every defect report, including the �les that had
to be changed. The component fault-relationships were extracted with SQL scripts.

The project was also analyzed for its fault relationships using the defect coupling measure
Re<C;Ci>

. Table 2 summarizes the measures for all releases and for all components. The
�rst column identi�es the release for which data is reported. The next three columns state
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Table 2: Defect Coupling for All Components: Release 1-4
All

Components Relations Re<C;Ci>

Re 1 75 1163 1-1449

Re 2 92 962 1-444

Re 3 29 74 1-200

Re 4 53 210 1-128

Table 3: Defect Coupling for Fault-Prone Components: Release 1-4
Fault-prone

Components Relations Re<C;Ci> Components TRC

Re 1 19 26 145-1449 18 711-7107

Re 2 32 70 44-444 19 422-4219

Re 3 13 16 20-200 13 54-541

Re 4 27 38 13-128 15 58-577

how many components the release contained, how many non-zero defect coupling measures
existed, and the range of values found for defect coupling. Table 3 shows this data for
those considered fault-prone based on the 10% threshold. In addition to the defect coupling
measure Re<C;Ci>

, we also show the cumulative defect coupling measure TRC . The �rst
column identi�es the release for which data is reported. The next three columns identify how
many of the components were fault-prone, how many fault-prone component relationships
existed, and the range of values for defect coupling measures for the fault-prone relationships.

Based on these results we also added to the Fault Component Directory Structure in Figure
1, marking components with fault-prone relationships to other components in bold. Bold
components are annotated with the release identi�ers in which they were considered rela-
tionship fault-prone. For example, sd52 and sd53 were relationship fault-prone in Release 2
and Release 3. The components not marked bold are fault-prone components with internal
problems instead of fault-prone relationships to other components.

Figure 2 shows the Fault Architecture Diagram for Release 1. Nodes represent components.
Arcs between two vertices show that components are fault-prone in their relationship. The
weights on the arcs indicate the defect coupling measure Re<C;Ci>

. Note that Figure 2
includes subdirectories at di�erent levels of the directory structure. This was necessary
when they included (changed) �les. For example, /A/c/cc/sd23 contains such �les.

Figure 2 consists of two distinct fault architecture structures. Components System/A/e and
System/A/b/sd18 are at the center of one. The second involves many components in subsys-
tem System/A/f. In this �gure, two components, System/A/c/cc/sd23 and System/A/d/nf22,
show no defect relationship with others. They are included because both components have
a high aggregate defect coupling measure TRC . The numbers in parentheses next to the
component identi�ers indicate the value of TRC . It means that these two components are
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Figure 1: Fault Component Directory Structure

modi�ed with many other components. Based on this �gure, it is worthwhile to investigate
the parts of the software architecture around A/e and A/b/sd18 in particular, as well as
the relationships between A/f/nf/34 and components with which it has highly ranked fault
relationships.

4.4 Fault Architecture Diagrams at the Subsystem Level

Figure 3 was constructed from the Component Level Diagram by lifting the component level
relationships to the next higher level in the directory structure. For example, the compo-
nents A/b/sd12, A/b/sd18, and A/b/sd19 are aggregated to A/b. The fault relationship
arcs of these components (to A/b and A/e) are aggregated as well. Thus the strength of
the aggregated fault relationships between two subsystems is the sum of the defect coupling
measures between components in either subsystem. If components within the same subsys-
tem only have fault relationships with each other, the system level fault architecture shows
a node (representing the subsystem) with an arc that starts and ends at the node. It is
annotated with the sum of these fault relationships (sum of the defect coupling measures
between components local to the subsystem). See, for example, subsystem A/f. The results
from this operation are presented in Figure 3.

Figures 3-6 show the Fault Architecture Diagrams at the system level for all four releases.
The thickest arcs indicate at least 500 problems involving both components, while medium
thick arcs represent between 200 and 500 problems. Thin arcs indicate 50 and 200 problems,
and thin dashed arcs represent less than 50 problems.

In Release 1, System/A/f shows large amounts of defect coupling between its components
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Figure 2: Fault Architecture at the Component Level for Release 1
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Figure 3: System Fault Architecture Release 1

(aggregate defect coupling of 8405). Although it seems a very problematic subsystem, it
doesn't show any defect coupling with other subsystems. System/a/e and System/A/b are
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Figure 4: System Fault Architecture Release 2
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Figure 5: System Fault Architecture Release 3

the relationship fault-prone subsystems in Release 1.

In Release 2, the fault architecture is considerably more complex indicating more widespread
problems. Nine subsystems out of thirteen are included as relationship fault-prone in Figure
4. System/A/c, System/A/e and System/A/d are relationship fault-prone in their interac-
tions with at least six other subsystems. System/A/b is also problematic. It has two fault
relationships with a fault coupling measure of over �ve hundred.

In Release 3, only three subsystems are relationship fault-prone. The new subsystem System/C

is only relationship fault-prone between components local to System/C.

In Release 4, System/A/e is the center of the relationship problems while System/A/c has
a high fault relationship with System/A/c/cc, System/A/c/tt and internally. The internal
problems of System/C and System/B persist. Instead of fault relationships between System/B

and System/Comm2 in Release 3, a fault relationship between System/B and System/Comm1
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Figure 6: System Fault Architecture Release 4

appears.

4.5 Multi-release Analysis

Figure 7 shows the Cumulative Release Diagram. It illustrates persistent problems. This
diagram aggregates relationships between releases. The arc annotations in the diagram
describe which fault relationships persisted across releases. For example, System/B had
internal problems carried from Release 2 to Release 3, and from Release 3 to Release 4 and
is therefore annotated with T23 and T34. Key fault relationship \drivers" are subsystems
System/A/b and System/A/e. They have fault relationships with most other subsystems in
the upper portion of the diagram. The problems internal to System/B and System/C also are
persistent. Moreover, Figure 7 also shows a persistent fault relationship problem between
System/A/c and System/A/b, System/A/c/cc, System/A/c/tt.

Three releases show a large number of fault relationships between subsystems System/A/b
and System/A/e. Persistent problems for Release 1 and Release 2 involve subsystems
System/A/b, System/A/c, System/A/d, and System/A/e. Even in the fourth release there
are problems in the relationships between subsystems System/A/b, System/A/c, and System/A/e.
We can also see some problems resurface in System/A/a. This indicates a systemic problem
that is not going away, and is a strong indicator of architectural problems in the relationship
between these components. It could also be accompanied by code decay due to repeated prob-
lem �xes. A positive indication is the decreasing number of problems between System/A/a

and System/A/e. T14 represents an interesting phenomenon. Arcs annotated with T14
reect fault relationships that were present in Release 1 and Release 4, but not in Release 2
and Release 3. One interpretation could be that the underlying architectural problems were
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never fully solved in Release 1 and, with addition of new features, reappeared in Release 4.
We recommend to look at System/A, especially System/A/b and System/A/e in conjunction
with their fault-related components which seem to be key to the biggest problems relative
to multiple releases.
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T12

T24T14

Figure 7: Cumulative Release Diagram

5 Conclusions and Further Work

This paper developed measures and a method to build fault architectures from defect reports.
A case study illustrates the method. Defect reports are easily available and could therefore
be used to identify the problematic parts of a system. We de�ned two measures that rank the
most fault-prone relationships between components and subsystems in a number of releases.
We created a Fault Component Directory Structure and investigated the fault-prone rela-
tionships between components. Fault Architecture Diagrams show fault-prone relationships
at the component and subsystem levels. Finally, a Cumulative Release Diagram is created to
track problematic relationships across releases. We were able to identify the most problem-
atic components and subsystems, both locally and in their fault relationships. In addition,
cross release analysis allowed investigation of trends and identi�cation of those components
and subsystems that show repeated problems. This identi�es prime candidates for remedial
action.

The measures presented in this paper represent a re�nement of the approach originally dis-
cussed in [8]. We were able to clearly identify for every release what the most problematic
component relationships are. The most problematic stayed that way over more than one re-
lease or reappeared. Even with improvement e�orts in successive releases, the core problems
in the architecture, while mitigated, never disappeared completely. Lesser problems, as for
example the di�culties with the System/Comm1 and System/Comm2 subsystems in Figure 4,
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may be due to premature release, rather than more deeply rooted architectural problems.
In the latter case, they will disappear from the fault architecture. We see the key advan-
tage to providing a fault architecture in drawing attention to the most pressing problematic
component relationships. This identi�es which relationships should be scrutinized whether
they require corrective maintenance or re-architecting. The most central problems seem to
revolve around interactions related to System/A/b and System/A/e. These subsystems have
relationships to many other components in System/A and should therefore be analyzed in
more depth.

None of these observations would have been possible by merely counting defects for each
component. The value of the technique presented here lies in

� showing the magnitude and nature of problems (i. e. whether they are local to com-
ponents or not).

� identifying and visualizing whether problem persist or get worse between releases.

� helping to focus on the most problematic as targets for improvement activities.

In the case study we were able to identify key parts of the system that warrant improvement.

This method di�ers from [8] in how defect reports are treated. [8] only counted defect reports,
here we developed a cohesion measure that models the magnitude of change necessary for
defect removal. We propose to use the latter if there are large di�erences in how defects are
repaired.

Further root cause analysis would bene�t from counting other indicators, but that depends
on their availability. In [7] the same system was analyzed using Principal Components
Analysis on detailed measures related to code changes in (shared) �les. They derived mea-
sures for impact of change to components and to related components. The most fault-prone
components show more decay. Our fault architecture concentrates more speci�cally on the
relationships between fault-prone components in terms of the magnitude of the problems
in which they are involved. The fault architecture could also be used in conjunction with
the analysis in [7] to further investigate architectural problems. The fault architecture iden-
ti�es which components and component relationships should be analyzed further through
Principal Components Analysis or box plot trends.

We would also like to apply other techniques like [17] to the defect analysis reports and
compare the results. Adapting a reverse architecture technique like [14] has the advantage
that it can be used to identify both the existing module architecture as well as its fault
related parts.
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