

L. Bratthall and C. Wohlin, "Understanding Some Software Quality Aspects from
Architecture and Design Models", Proceedings the 8th International Workshop of
Program Comprehension, pp. 27-34, Limerick, Ireland, 2000. Extended version

invited to Transactions on Software Engineering.

Understanding Some Software Quality Aspects from
Architecture and Design Models

Lars Bratthall and Claes Wohlin
Dept. Communication Systems, Lund University

Box 118, SE 221 00 Lund, Sweden
+46-46-2220000

lars.bratthall|claes.wohlin@telecom.lth.se
Abstract
Software systems evolve over time and it is often difficult

to maintain them. One reason for this is often that it is hard
to understand the previous release. Further, even if
architecture and design models are available and up to date,
they primarily represent the functional behaviour of the
system. To evaluate whether it is possible to also represent
some non-functional aspects, an experiment has been
conducted. The objective of the experiment is to evaluate the
cognitive suitability of some visual representations that can
be used to represent a control relation, software component
size and component external and internal complexity. Ten
different representations are evaluated in a controlled
environment using 35 subjects. The results from the
experiment show that it is possible to also represent some
non-functional aspects. It is concluded that the
incorporation of these representations in architecture and
design descriptions is both easy and probably worthwhile.
The incorporation of the representations should enhance the
understanding of previous releases and hence help software
developers in evolving and maintaining complex software
systems.

1. Introduction
Software systems grow continuously, i.e. new versions of

the software are released either to enhance, improve or
correct its behaviour. Few software products are released
once and then never updated. The evolution of software
systems calls for an understanding of previous versions and
releases of the software system. Moreover, it is not possible
to rely solely on the understanding of the code. The code is
important, but other descriptions are needed to support the
understanding of software, for example, architecture and
design descriptions. The latter descriptions provide valuable
tools on a higher abstraction level than the code. Software
architecture has gained an increased interest in the last few
years. The value of architecture models has been highlighted
among others by [5, 16, 24], and several types and views of
these models have been suggested, along with some UML
models, e.g. [1].

The architecture and design models are, however,
primarily formulated to be used during development. This
conjecture is based on the fact that no models, to the best of
our knowledge, include information regarding issues that
only can be gained after having developed the system. In
other words, the models have no means of incorporating
experiences from previous releases, for example, in terms of

quality aspects. The models are developed to form a basis for
the continuation of the implementation within a project and
not between successive projects. We believe, however, that
there are simple ways of including quality aspects in
architecture and design descriptions. In particular, it should
be possible to add information to the descriptions in the
coding and testing phase of one release to help in the
understanding as new versions of the software are to be
developed.

Code decay and identification of fault-proneness between
releases have gained an increasing interest, for example,
[19, 22]. These are important areas to help guide
development activities in future releases or identify
candidates for reengineering efforts. A problem encountered
in these studies is that the information about non-functional
aspects of the software has to be found by archival analysis
of the software, testing records and problem reports. Four
major reasons for fault-proneness are size, relationships, and
internal and external complexity. See e.g. [4, 21].

The intention of this paper is to study whether these
aspects easily can be included in architecture and design
descriptions, and hence help in the understanding of some
non-functional aspects between releases. A model is of little
value unless it is understood. Once semantics and syntax
have been established, there is a ground for understanding a
model. Is this enough or can we increase the intuitive
understanding of a model, i.e. can we organize a model in
such a way that our cognitive processes shaped by prior
experience and knowledge help us interpret the model more
easily? This is basically the approach taken in the pattern
community with respect to functional behaviour. Pattern
efforts, e.g. [7, 12] help us traverse the path from the
problem domain to the solution domain. All of the pattern
approaches require prior knowledge of the patterns to be
truly effective in terms of how easily a particular pattern is
recognized in models of source code or in the source itself.

The objective of this paper is also to take a cognitive
approach based on previous experience and knowledge. The
focus is, however, on some quality-related aspects rather
than on functional aspects. This paper presents an
experiment where the intuitive understanding various
representations for size, relationships, internal and external
complexity is evaluated. The basic hypothesis of the study is
that it is possible to decorate or extend existing architecture
and design description techniques fairly easily to include
these four aspects related to quality. By decorating models
instead of creating new models, we adhere to Baker’s and

Eick’s proposition that a visualization should adhere to the
structure of the software [2], which in this case is
represented by an existing architecture model of the
software.

In the experiment different ways of representing four
aspects are presented to subjects and the intuitive
understanding of the representation is evaluated. From the
experiment, it can be concluded that different individuals
have the same intuitive understanding of the representations
evaluated. This shows that it should be possible to include
intuitive representation for these four aspects to help in the
understanding of software systems between new versions of
the software. This is feasible since it is easy to add
information about these aspects as the software is being
released. The information provides then valuable input to
forthcoming versions of the software.

This paper is organized as follows. Section 2 defines
research questions, variables and hypothesis. Section 3
discusses the methods used to conduct the experiment.
Section 4 presents an analysis of collected data. Section 5
shows some possible applications of the results. Finally,
section 6 summarizes the paper.

2. Experiment definition
In this experiment, it is analysed how software

developers can be supported during evolution of a software
system. The objective of the experiment is to evaluate
whether some relationships and quality related issues can be
represented easily and intuitively in software architecture or
design description. Inspired by e.g. [10, 11], it is believed
that different two-dimensional visual representations better
express some software engineering concepts in terms of
how intuitive the mapping between the representation and
the concept is. The representation that is the most intuitive
representation of a software engineering concept is said to
have the minimum accessibility weight. For example, in
Figure 1 there are two symbols, that both represent that
smoking is not allowed. The left symbol is a more intuitive
representation of the concept. Out of the two symbols, the
left symbol can be said to have the minimum accessibility
weight - no previous training or information is needed to
understand what the symbol represents. By ensuring
minimum accessibility weight in models, the need for
training and manuals is minimized.

Four research questions are formulated:

RQ1 How do we best show that component A con-
trols the operation of a component B? That a component
controls another component is referred to as the ‘CC’ rela-
tionship.

RQ2 How do we best show that it is more complex
to modify the internals of component A than it is to modify
the internals of component B? This is referred to as the
internal complexity relationship (‘IC’).

RQ3 How do we best show that the externally visi-
ble interface of component A is more complex than the
externally visible interface of component B? This is referred
to as the external complexity relationship (‘EC’).

RQ4 How do best show that the size of
component A is larger than the size of component B? This is
referred to as the component size relationship (‘CS’).

All of the research questions refer to an intuitive
mapping between a concept used within software
engineering and a visual representation. There are a large
number of classes of spatial concepts used for visual
representation, e.g. [13] lists 51 spatial concepts and
indicates that there are many more. This experiment
investigates only a few visual representations, that have
been chosen because they share three properties: i) They are
suitable both for paper and screen representation, ii) They
can be combined with many existing architecture and design
diagrams and iii) The concepts can be used concurrently to
decorate an existing diagram with several new properties.
The entities studied for the different relationships are shown
in Figure 2. Representations 1 to 4 are assessed as good
candidates for the CC relationship, i.e. possible indications
of that component A controls component B.
Representations 5 to 10 are assessed for the EC, IC and CS
relationships. For example, it is possible to evaluate whether
representation 6 is a better indicator of that component A is
larger (CS relationship) than component B, than, for
example, representation 9.

From the research questions, a number of hypotheses are
derived. These are described in Table 1. The hypotheses all
indicate that we believe that there is a representation that is
better than the other ones.

Fig. 1. Two symbols that represent
the concept of no smoking.

Fig. 2. Objects studied

Objects studied for
the CC relationship Objects studied for the EC, IC and CS relationships

A B

Repr 1
B A

Repr 2

B

A

Repr 3 Repr 4

A

B

A B

Repr 5

BA

Repr 6

A B

Repr 7

A B

Repr 8

A B

Repr 9

A B

Repr 10

3. Method

3.1 Introduction
The strategy used to answer the research questions is an

experiment in a laboratory environment [26]. For data
collection, questionnaires have been used. The method used
for data collection and analysis is summarized in Figure 3
and described further below.

3.2 Sampling and generalization
From [18] it is known that entry-level programmers work

differently from more experienced programmers. In
particular, experienced programmers are able to
concurrently draw on more sources of information such as
different models. In this experiment, it is studied how entry-
level programmers and non full-time programmers can be
aided. There have been 35 participants in the experiment. 26
of them are university computer science and electronics
master students, and 9 of them are Ph.D.s or Ph.D. students.
ANOVA tests comparing the two types of participants show
no significant difference in the results from the two types of
participants. Therefore, all participants are treated as one
homogeneous group, despite that the participants have

different exposure to various tools, technologies and
methodologies. All participants have had some exposure to
object-oriented methods prior to the experiment. We believe
that the way the objects studied are perceived is not changed
much by the increased time pressure and competitiveness
that may exist in industry as compared to a student/
university environment. Given the background of the
participants, it should be possible to generalize to at least
entry level programmers due to the student participants, and
probably also to somewhat more experienced designers as
there is no significant difference in the results from students
and Ph.D.s/Ph.D. students.

3.3 Data collection
Data collection has taken place in a laboratory setting.

Data collection took place at three different occasions. The
same introduction to the experiment was given to all
participants. This introduction made sure that all
participants knew how to fill in the questionnaires. It was
also made sure that all participants knew that they were not
to think more than 15 seconds for each question. This was to
ensure that the initial understanding of each question was
captured. No hypotheses regarding the outcome of the
experiment were presented to the participants.

Table 1. Hypotheses. All hypotheses are assessed at the significance level. , ,
,

RQ Name Definition
RQ1 HCC,1 There is some representation that has minimum accessibility weight in terms of

how well it represents that software component A controls software component B.
HCC,0 Null hypothesis: There is no statistical difference between the representations

that may represents that software component A controls software component B. Explanation of variables:
The average weight assigned to representation n regarding how well it represents the “A controls B” rela-
tionship (CC) is equal to the average weight assigned to representation m for the same relationship.

RQ2 HIC,1 There is some representation that has minimum accessibility weight in terms of
how well it represents that software component A is internally more complex than software component B.
Null hypothesis: HIC,0.

RQ3 HEC,1 There is some representation that has minimum accessibility weight in terms of
how well it represents that software component A is internally more complex than software component B.
Null hypothesis: HEC,0.

RQ4 HCS,1 There is some representation that has minimum accessibility weight in terms of
how well it represents that software component A is larger than software component B. Null hypothesis:
HCS,0.

p 0,05= m n, 1 2 3 4, , ,{ }∈ m n≠
p q, 5 6 7 8 9 10, , , , ,{ }∈ p q≠

AvgCC Repr n, AvgCC Repr m,≠

AvgCC Repr n, AvgCC Repr m,=

AvgIC Repr p, AvgIC Repr q,≠

AvgEC Repr p, AvgEC Repr q,≠

AvgCS Repr p, AvgCS Repr q,≠

Fig. 3. Data collection and analysis

Random ordered questionnaires

35 participants

Compare objects pairwise

Compute AHP statistics

Draw boxplots, no high CR outliers

Remove outliers (high CR)

Draw graphs for all data

Compute Kruskal-Wallis

Compute ANOVA

Same results?

Compute PLSD

Yes. Thus assumptions for
ANOVA met well enough

Four different questionnaires have been used. Each of the
questionnaires addressed only one research question. For
each of these four questionnaires, there have been three
different versions. The ordering of questions in each version
has been different, but the set of questions has been equal
across all versions. Participants were assigned one of each
questionnaire in random order. The version used of each
questionnaire was also randomly assigned. Thus, the order
of questions answered is random for each participant.

3.4 Analysis
The main statistical analysis method applied to the

quantitative data collected through the questionnaires is the
Analytical Hierarchical Process (AHP) [15, 23]. The AHP
was developed to improve decision-making through giving
priority to items pair-wise, rather than prioritizing all items
at once. Thus the method simplifies complex decision-
making. The output from an AHP analysis is a value
denoting the relative weight of items compared. In this
paper, the AHP is used to compute the relative accessibility
weight of items denoted objects. A number of tests have
been used1 on the output of the AHP, notably the Kruskal-
Wallis tests [17], Analysis of Variance (ANOVA) [20] and
Protected Least Significant Difference tests (PLSD) [20].
The Kruskal-Wallis test is non-parametric and does not
make any assumptions of the distribution or variance of data
collected. This test is used to initially get a picture of the
data analysed. The ANOVA makes two assumptions: The
variance in the groups being compared must be equal, and
the data must be distributed according to a normal
distribution. If both a Kruskal-Wallis test and an ANOVA
show the same result, PLSD tests have been used as it is
assumed that the preconditions for the ANOVA have been
met well enough. PLSD tests have been used to identify
what contributes the most to the results of an ANOVA.

The AHP has an additional feature. Using AHP, it is
possible to see how consistent answers are. For example, if a
participant claims that item A is more important than
item B, and that item B is more important than item C, and
that both item A and item B is much more important than
item C, there is high consistency in answers. On the other
hand, if the participant claims that A is more important
than B, and that B is more important than C, then answers
are not consistent if the participant also considers item C to
be more important than item A. The consistency is
measured by computing a consistency index (CI) and
adjusting it according to the number of different items
compared, to an adjusted index (CR). By looking at the CR,
it is possible to objectively identify respondents who have
either not put a lot of thought into the answers, or have not
understood the questions, or have not enough knowledge to
compare the items to prioritize. A low CR value is a sign of
high consistency in answers given. As a rule of thumb,
answers with a CR > 0.40 are treated as outliers. For details
in how to compute the relative weight and CI and CR, see
e.g. [15].

3.5 Threats and validity
The validity of the findings reported depends to a large

extent on how well threats have been handled. Four types of
validity threats [9] are analysed: Conclusion validity,
construct validity, internal validity and external validity. The
relationship between these is illustrated in Figure 4.

Conclusion validity (marked 1 in Figure 4) concerns the
relationship between the treatment and the outcome. Care
has been taken not to violate any assumptions made by the
statistical tests. The questions used in the questionnaires
have been easy to answer, and the participants were trained
in how to answer the questions. Therefore, there is high
reliability in measures. As the data collection took place at
three different occasions, there has been a risk that the
reliability of the implementation of the experiment could be
degraded. This threat has been addressed by using a highly
standardized experiment introduction. By collecting data at
different occasions, random irrelevancies in the
experimental setting have been accounted for. The set of
respondent is fairly homogenous, in terms of that there is an
overlap in previous experiences in courses studied at the
university. On the other hand, there is no statistically
significant difference between the student participants and
the non-student participants. Therefore, the present random
homogeneity (or heterogeneity) of respondents should not
affect the conclusion validity much.

Internal validity (2) concerns matters that may affect an
independent variable’s causality, without the knowledge of
the researcher. History effects, i.e. how previous events
affect participants, have been taken into account in several
ways. First, there is some heterogeneity in the group of
respondents. This balances long-term history effects.
Secondly, the data collection has taken place at three
different occasions. This accounts for effects of recent
events. Thirdly, respondents answered questions in different
order by using different versions of four questionnaires
answered in random order. The latter ensures that history
effects from the last few questions are accounted for. As
data collection took no more than an hour, there should be
no maturation effects. Testing effects have been minimized
by making sure that there was no gain or loss in how
questions were answered. No participants left the
experiment, i.e. there has been no mortality.

Construct validity (3) concerns whether we measure
what we believe we measure. Constructs used in the

1. SPSS 8.0 running on Windows NT has been used for all tests
except the AHP.

Th
eo

ry
O

bs
er

va
tio

n

What you test
Independent Dependent

cause-effect
construct

treatment-
outcome
construct

Cause
construct

Effect
construct

Treat-
ment

Out-
come

Fig. 4. Experiment principles as described
by [26]

1 2

4
3 3

Experiment objective

variable variable

questionnaires have been well defined. The use of the scale
used to compare objects has been explained to all
participants. The use of the AHP and using the consistency
ratio to identify outliers is a way of reducing the mono-
method bias by making each participant compare each
object studied to all other objects. Thus, the results from
each respondent are not dependent on a single answer. There
is always a risk that respondents guess the hypotheses at
hand. By making sure questions are answered in different
orders, we balance both the threat of hypotheses guessing as
well as the threat of interaction between different questions
and objects.

External validity (4) concerns generalization of the
findings to other contexts and environments than the one
studied. All participants have been active at a university,
either in teaching or studying. The teachers have varying
degree of industrial background. First, there is no
statistically significant difference between the teachers and
the students. Secondly, which may be more important for
the external validity: Students leave the university for
industry. Student participants are close to the end of their
university education (M.Sc. level). It is believed that
possible change in competitiveness and time pressure that
may be different in industry and a university setting does not
affect the perception of the objects studied. Therefore,

results should be valid at least for the first few years in
industry. Another threat is that the experiments compare the
objects in Figure 2 in isolation, not in complex
combinations such as shown in Figure 11. It is possible that
this affects the outcome, and further studies is needed to
verify that understanding does not change in complex
combinations. A threat related to the understanding of
software, is the wide range of comprehension strategies
used by different individuals [18, 25]. The objective of this
paper is not to generate a silver-bullet solution, rather a
particular set of comprehension issues are investigated. The
biggest threat to external validity we can think of, is the
prior exposure by other populations to particular mappings
between the software engineering concepts and the visual
representations studied. This could possibly be the case if
some tools have been used before.

4. Results and analysis
In this section, results from the experiment are presented.

First, the analysis for the CC relationship is presented in
some detail, to explain how analysis has taken place. In
table 2, results for all four relationships are summarized.
Finally, in Figure 9 all results are graphically summarized.

Fig. 5. Boxplot for the CC relationship

1 2 3 4
Representation number

0,0

0,2

0,4

0,6

R
es

ul
t

Fig. 6. Boxplot for the IC relationship

5 6 7 8 9 10
Representation number

0,0

0,2

0,4

0,6

R
es

ul
t

Fig. 7. Boxplot for the EC relationship

5 6 7 8 9 10
Representation number

0,0

0,2

0,4

0,6

R
es

ul
t

Fig. 8. Boxplot for the CS relationship

5 6 7 8 9 10
Representation number

0,0

0,2

0,4

0,6

R
es

ul
t

Detailed analysis of the CC relationship
HCC,1 is tested. The participants were asked “Does

object 1 or object 2 indicate the stronger the fact that
software component A controls software component B?”.
The objects referred to are representations 1, 2, 3, and 4 in
Figure 2. The individual participants’ results and a boxplot
are shown in Figure 5. From Figure 5, it is seen that
representation 4 seems to be the best and that the next best is
representation 1. Thus, the next step is to evaluate if the
differences seen in Figure 5 are statistically significant. At
this stage, it is also noted that no participants had a
CR>0.40, so there are no outliers.

Both a Kruskal-Wallis test and an ANOVA test show that
there is a statistically significant difference at the 0.005
level in how designers rank the accessibility-weight of the
four objects studied.

Repr4 is on average the best representation of the CC
relationship. Since an PLSD shows that AvgCC, Repr4 is
statistically different at the 0.005 level from the next best

representation of the CC relationship, Repr1, HCC,0 can be
rejected. The conclusion is that Repr4 is the representation
of those studied that represents the controlling/controlled
relationship with the smallest accessibility weight. This
answers RQ1 and addresses the HCC hypotheses.

This analysis and the corresponding analysis for the other
relationships are summarized in table 2. In addition, box
plots for the other three hypotheses are shown in Figures 6-
8.

The mappings with the minimum accessibility weight are
illustrated in Figure 9. There is also an example of how the
properties can be combined together.

5. Application of results
In order to illustrate how the results can be applied, a

scenario is presented below.
A Software Development Team (SDT) is presented with

a static architecture level diagram at two aggregation
levels [6] as illustrated in Figure 10. The software illustrated

Table 2. Summary of analysis for the four relationships studied
CC IC EC CS

Representations compared 1, 2, 3, 4 5, 6, 7, 8, 9, 10 5, 6, 7, 8, 9, 10 5, 6, 7, 8, 9, 10
Boxplots of all data Figure 5 Figure 6 Figure 7 Figure 8
Outliers due to CR>40, participant(s) no. None 2, 20 9 2
Hx rejected by a Kruskal Wallis at a 0.05 signif-
icance level

HCC,0 rejected HIC,0 rejected HEC,0 rejected HCS,0 rejected

Hx rejected by an ANOVA test at a 0.05 signif-
icance level

HCC,0 rejected HIC,0 rejected HEC,0 rejected HCS,0 rejected

Representation with best average minimum
accessibility weight

Repr 4 Repr 7 Repr 9 Repr 6

Representation with next best minimum acces-
sibility weight

Repr 1 Repr 9 Repr 7 Repr 9

PLSD indicates difference at 0.05 significance
level between the two best representations

Yes No Yes Yes

Suggested mapping with minimum accessibil-
ity weight

Repr 4 Repr 7a Repr 9 Repr 6

Answers research question RQ1 RQ2 RQ3 RQ4

a. Representation 9 is significantly better at representing the EC relationship than representation 7. Therefore, rep-
resentation 9 is chosen for the EC relationship. There is no statistically significant difference between representa-
tions 7 and 9 for the IC relationship, but since representation 9 already is accounted for, and representation 7 is
the best on average, it is chosen to represent the IC relationship.

Fig. 9. Results and example of combined use

Component A con-
trols component BA

B

BA

A B

A B

Component A is
internally more
complex than com-
ponent B

Component A is
externally more
complex than com-
ponent B.

Component A is
larger than compo-
nent B.

B C

A

Component C is smaller than B,
roughly the same size as A. However,
component C is both hard to use and
hard to understand the internals of.

Component A,
which is complex to
use, controls com-
ponents B and C.
Component B is
large, but not hard
to understand.

is parts of an industrial cruise control system, with the
ability to simulate the car, the driver and the road. The SDTs
task is to make the system behave better in very steep uphill
and downhill conditions. The SDT does not have any
previous knowledge of the software.

Seeing Figure 10a, the SDT draws a number of
immediate conclusions: The Simulator should be changed,
so that higher degrees of road elevation could be handled.
Also, the CruiseControl should be changed to contain better
algorithms. The team looks into architecture models at a
lower aggregation level as illustrate in Figure 10b. There are
no more fine-grained static models available to the team.
The team decides that the Road, Calculator and CarControl
components are likely to be changed. However, without
experience from cruise-control systems, it can be hard for
the team to predict for example change effort in each
component, and where the largest risks for errors are. This is
important to know, since in some systems, a small number
of components are likely to account for a large amount of
externally visible errors [4, 14]. Therefore, the SDT enters
the understandability mode of their software development
tool. This is illustrated in Figure 11.

Using the information in Figure 11, the SDT makes a
number of new decisions: The Road is a small component.
However, as its internals are hard to understand, ample time
for understanding the component, as well as reviewing and
testing the component should be planned for. The Calculator
component is small and not internally complex. Therefore,
less time is allocated into understanding that component.
Finally, the CarControl component is both large and
complex (internally and externally). Therefore, two
developers are devoted entirely to this component. By these

adjustments to the development process and organization, it
is likely that the fault-prone component types identified
by [22] are effectively handled. Thus this scenario
exemplifies how the representations suggested by this
experiment can aid in making higher quality software.

In this scenario, the visual representation suggested for
the controlling/controlled relationship is not in use. The
reason for this is that it is believed that this relationship best
should be modelled at design-time, by humans, because it
can be very hard to determine which component controls
another component from just looking at machine readable
code. The other properties can possibly be automatically
computed.

6. Summary
The presented experiment is formulated based on the

belief that it should be possible to represent some quality
related aspects clearly in architecture and design models. To
the best of our knowledge, no architecture or design
representation include representations to capture control,
size, external and internal complexity. Thus, the objective of
the experiment was to evaluate whether it would be possible
to augment some existing architecture and design models
with this type of information, in an intuitive way.

Ten different representations have been evaluated, and
the results from the experiment have shown with statistical
significance, in most cases, that it is indeed possible to
represent non-functional aspects in architecture and design
models. The evaluated representations can easily be
introduced as an integral part in most graphical architecture
and design descriptions, which differ from for example [8]
where qualitative information is displayed as separate

Fig. 10. Cruise-control without understandability mode. a) is at a high aggregation level,
b) is a lower aggregation level

SimulationSystem

CruiseControl

Driver

Road

Car

System SimCarCruise System SimCarCruise

SimulationSystem

Main

Calculator

CarControl

CruiseControl

a) b)

Fig. 11. Cruise-control in understandability mode. a) is at a high aggregation level, b) is
a lower aggregation level

SimulationSystem

CruiseControl

Driver

Road

Car

System SimCarCruise System SimCarCruise

SimulationSystem

Main

Calculator

CarControl

CruiseControl

a) b)

models generated from text-oriented code.
The main value of the results are is in software

evolution. Representations of the evaluated types can
support architecture and design understanding during
evolution and maintenance. In addition to the experiment,
it has been illustrated through an example how tool support
can be enhanced to include representations of non-
functional aspects. For example, [2, 3] use component area
to illustrate component size. The findings in this study
strengthen the idea that this is a sensible representation.

In summary, the experiment indicates that
representations can be found that can be used when
software is evolving and we would like to stay in control of
the evolution. The representations suggested can be viewed
as warnings signs together with, for example, methods for
classifying software components. Further work includes
comparing the representations suggested by this study in
more complex environments as well as the use in large
scale software systems.

References
[1] Alhir, S.S. UML in a Nutshell. O’Reilly & Associates, Sebas-

topol, CA, USA, 1998.
[2] Baker, M.J., and Eick, S.G. “Space-Filling Software Visuali-

zation”, Journal of Visual Languages and Computing 6(2),
June 1995.

[3] Ball, T.J., and Eick, S.G. “Software Visualization in the
Large”, IEEE Computer 29(4), Apr 1996.

[4] Basili, V.R., and Perricone, B.T. “Software Errors and Com-
plexity: An Empirical Investigation”, Comm. of the ACM.
Vol. 27, No. 1, Jan 1994.

[5] Bratthall, L., and Runeson, P. “Architecture Design Recovery
of a Family of Embedded Software Systems”, Proc. TC2
First Working IFIP Conference on Software Architecture,
San Antonio, TX, USA, 1999.

[6] Bratthall, L., and Runeson, P. “A Taxonomy of Orthogonal
Properties of Software Architecture”, Proc. Second Nordic
Workshop on Software Architecture. Ronneby, Sweden,
Aug. 1999.

[7] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.,
and Stal, M. Pattern-Oriented Software Architecture: A Sys-
tem of Patterns, John Wiley & Sons, Great Brittain, 1996.

[8] Chuah, M.C., and Eick, S.G. “Glyphs for Software Visualiza-
tion”. 5th Int’l Workshop on Program Comprehension, IEEE
Computer Society Press, Dearborn, Michigan, USA, May
1997.

[9] Cook, T.D., and Campbell, D.T. Quasi-Experimentation -
Design and Analysis Issues for Field Settings, Houghton
Mifflin Company, 1979.

[10] Egenhofer, M. J., and Mark, D.M. “Naïve Geography”, In
Proc. Spatial Information Theory: A Theoretical Basis for
GIS COSIT’95. Springer Verlag, Germany. 1995

[11] Freksa, C. “Spatial and Temporal Structures in Cognitive
Processes”, Foundations of Computer Science: Potential -
Theory - Cognition, Springer Verlag, Germany, 1997.

[12] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1994.

[13] Habel, C., and Eschenbach, C. “Abstract Structures in Spatial
Cognition”, Foundations of Comp. Science. Potential -
Theory - Cognition, Springer Verlag, Berlin, Germany, 1997.

[14] Haglund, S., and Persson, J. “A Process for Reverse Engi-
neering of AXE 10 Software”, Proc. 6th Reengineering
Forum, Fierenze, Italy, Mar 1998.

[15] Karlsson, J., and Ryan, K. “A Cost-Value Approach for Pri-
oritizing Requirements”, IEEE Software, Vol. 14, No. 5,
Sep./Oct. 1997.

[16] Kruchten, P., “The 4+1 View Model of Architecture”, IEEE
Software, vol. 12, no. 6, Nov. 1995.

[17] Kruskal, W.H., and Wallis, W.A. “Use of Ranks on One Cri-
terion Variance Analysis”, Journal of the Americal Statistical
Association, Vol. 47. Corrections appear in Vol. 48, 1952.

[18] von Mayrhauser, A., and Vans, A.M. “Comprehension Proc-
esses During Large Scale Maintenance”, Proc. 16th Intl.
Conf. Software Engineering. Sorrento, Italy, May 1994.

[19] von Mayrhauser, A, Wang, J., Ohlsson, M.C., and Wohlin, C.
“Deriving a Fault Architecture from Defect History”, Proc.
Intl. Symposium on Software Reliability Engineering,
ISSRE’99.

[20] Montgomery, D.C. Design and Analysis of Experiments,
Third Edition, John Wiley & Sons, New York, 1991.

[21] Ohlsson, M.C., von Mayrhauser, A, McGuire, B., and Woh-
lin, C. “Code Decay Analysis of Legacy Software through
Successive Releases”, Proc. IEEE Aerospace Conference.
Colorado, USA. March 1999.

[22] Ohlsson, M.C., and Wohlin, C. “Identification of Green, Yel-
low and Red Legacy Components”, Proc. Int’l. Conf. on
Software Maintenance. Bethesda, Washington D.C., USA,
Nov. 1998.

[23] Saaty, T.L., The Analytic Hierarchy Process, McGraw-Hill,
New York, USA, 1980.

[24] Soni, D., Nord, R., and Hofmeister, C., “Software Architec-
ture in Industrial Applications”, Proc. 17th Int’l. Conf. Soft-
ware Eng., Apr 1995.

[25] Storey, M.D., Wong, K., and Müller, H.A. “How do Program
Understanding Tools Affect How Programmers Understand
Programs?”, Proc. Fourth Working Conf. Reverse Engineer-
ing. Amsterdam, The Netherlands, Oct. 1997.

[26] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell,
B., and Wesslén, A. Experimentation in Software Engineer-
ing: An Introduction, Kluwer Academic Publishers, Boston,
MA, USA, 1999.

	Abstract
	1. Introduction
	2. Experiment definition
	3. Method
	3.1 Introduction
	3.2 Sampling and generalization
	3.3 Data collection
	3.4 Analysis
	3.5 Threats and validity

	4. Results and analysis
	5. Application of results
	6. Summary

	References
	Understanding Some Software Quality Aspects from Architecture and Design Models

