
 

 

 

 

 

 

 

 

 

 

 

M. Zhao, C. Wohlin, N. Ohlsson and M. Xie, "A Comparison between Software Design 
and Code Metrics for the Prediction of Software Fault Content", Information and 

Software Technology, Vol. 40, No. 14, pp. 801-809, 1998. 



A comparison between software design and code metrics for the prediction
of software fault content

M. Zhaoa, C. Wohlinb,* , N. Ohlssonc, M. Xied

aDepartment of Technology, University College of Ga¨vle-Sandviken, Ga¨vle-Sandviken, Sweden
bDepartment of Communication Systems, Lund University, Lund, Sweden

cDepartment of Computer and Information Science, Linko¨ping University, Linko¨ping, Sweden
dDepartment of Industrial and Systems Engineering, National University of Singapore, Singapore, Singapore

Abstract

Software metrics play an important role in measuring the quality of software. It is desirable to predict the quality of software as early as
possible, and hence metrics have to be collected early as well. This raises a number of questions that has not been fully answered. In this
paper we discuss, prediction of fault content and try to answer what type of metrics should be collected, to what extent design metrics can be
used for prediction, and to what degree prediction accuracy can be improved if code metrics are included. Based on a data set collected from a
real project, we found that both design and code metrics are correlated with the number of faults. When the metrics are used to build
prediction models of the number of faults, the design metrics are as good as the code metrics, little improvement can be achieved if both
design metrics and code metrics are used to model the relationship between the number of faults and the software metrics. The empirical
results from this study indicate that the structural properties of the software influencing the fault content is established before the coding
phase.q 1998 Elsevier Science B.V. All rights reserved.

Keywords:Software metrics; Correlation analysis; Fault prediction; Metric selection; Regression analysis

1. Introduction

Faults and failures in software are costly factors [1, 2].
They account for a significant amount of any project budget
as activities related to fault detection and fault correction
often correspond to 30%–50% of the budget [3]. This cost
cannot be removed completely as methods are needed to
ensure the quality of the software, but the costs for fault
handling should be possible to decrease considerably by
introducing and improving methods for early fault identifi-
cation. Moreover, this information can be used as feedback
to the development and the enhancement of the develop-
ment processes. Thus, it can be used for process improve-
ment and hence cost reduction.

Based on the above reasoning, it is clear that methods are
needed to predict, control and improve fault handling in
general. The type of methods can be divided into two
major classes: methods for prediction of the number of
faults in a specific module and methods for identification
of fault-prone modules. The first type of methods has been
investigated and evaluated, but it has been difficult to

develop a valid model, in particular a model which is trans-
ferable between projects or organisations. An example of
this approach is presented in [4]. The second type of meth-
ods has been more successful [1], and in particular it has
been noted that we have a Pareto principle, i.e. a limited
number of modules account for a considerably amount of
the faults. In [1], it is shown based on fault data collected
that 20% of the modules account for 60% of the faults for a
large software system and how it is possible to build a
transferable model between releases,

Thus, methods for identification of fault- and failure-
prone modules and models for fault prediction are a poten-
tial way to improve software quality and to reduce cost. It is
well known that a great deal of the logic in a software
system is decided in the design phase, hence it is not unrea-
sonable to assume that a model may as well be formulated
from the design as from the code. The main focus of our
previous studies [1, 5] has been on formulating models from
design metrics. Our hypothesis is that a model for identifi-
cation of fault-prone modules using design metrics is
equally good as a model created based on code metrics.
This hypothesis has, however, not been thoroughly evalu-
ated. The underlying assumption has been that design
metrics are as good as code metrics from a prediction

Information and Software Technology 40 (1998) 801–809

0950-5849/98/$ - see front matterq 1998 Elsevier Science B.V. All rights reserved.
PII: S0950-5849(98)00098-6

* Corresponding author. Tel.:1 46 46 222 3329, fax:1 46 46 145823;
e-mail: claesw@tts.1th.se



point of view, and superior in terms of when the prediction
can be made.

The objective here is to study if the model based on
design metrics is as good as the model based on code
metrics. In this paper, we focus on investigating the good-
ness of models for fault prediction using design metrics,
code metrics and a model with a combination of design
and code metrics. The latter means using information
from both design and code to formulate a fault prediction
model. The models are formulated based on data collected
from the development of a software system in the telecom-
munications domain.

The paper is organised as follows. In Section 2, the back-
ground and their correlation analysis of the collected data
are described, and in Section 3 the different prediction
models are presented. Their detailed statistical analysis is
given in Appendix B (Tables B1–B3). The interpretation of
the models and evaluation of the results are discussed in
Section 4. Finally, the findings are summarised and
discussed in Section 5.

2. Data description and correlation analysis

2.1. Data description

The study is based on an investigation of 28 software
modules for a large real time system in the telecommunica-
tion domain. The system studied is one of the company’s
main products. The actual release investigated is rather typi-
cal for releases of this particular system, although the choice
of system and release was done based on availability.

The system consists of approximately 100 modules. Of
these modules, 28 had full documentation required for this
study, and were therefore included in this study. Other
models were typically not updated to the actual implemen-
tation and could therefore not be used. The size of the
modules is between 270 and 1900 lines of code. For each
of these modules the number of fault reports from test and

operation were counted and several design and code
measures were collected. These types of measures are
frequently referred to as complexity measures, but primarily
they describe different aspects of the software and no
measure can really be considered to capture the actual
complexity. In total 19 different measures were collected,
with 10 measures being collected from the design documen-
tation and nine measures (including the number of lines of
code) being collected from the resulting code.

The design data collected were primarily a counting of
the number of symbols of different types. The language used
during design is a predecessor to SDL, (specification and
description language) [6], and it is basically a finite-state-
machine with states and signals. A modified version of
McCabe’s cyclomatic complexity, [7] was used as well.
The modification simply enabled signal sending and recep-
tion, respectively. The design measures are listed in Table 1.

The measures from the code are also primarily a matter of
counting the number of constructs of different types, for
example, number of variables and number of if-statements.
The programming language is company internal and
tailored to their applications and hardware platform. It
must be noted that the programming language was very
much based on goto-statements, and in particular it was
observed that two different types of goto-statements were
used. The difference is:

• goto 11; (unconditional goto)
• if ‘condition’ then goto 12; (conditional goto)

These two types were calculated separately since the
hypothesis was that the first type of goto contributed more
to the fault content than the second type of goto. The code
metrics are briefly described in Table 2.

2.2. Comparing design and code metrics

Most studies only explore the statistical relationship
between metrics, while vital expert knowledge about the
metrics is neglected. Such information is essential for inter-
pretation of analysis and the resulting models. The logical
relationship between code and design metrics are
summarised in Table 3.

M. Zhao et al. / Information and Software Technology 40 (1998) 801–809802

Table 1
Design measures collected

SDL-pages Number of design pages in terms of SDL diagrams.
Tasks Number of task symbols in the SDL descriptions.
Outputs Number of output symbols in the SDL descriptions.
Inputs Number of input symbols in the SDL descriptions.
If Number of if-boxes in the SDL descriptions.
States Number of state symbols in the SDL descriptions.
McCabe This measure is an adaptation of the original proposal by

McCabe. The measure is adapted to enable measurement
on design and in particular to include the signalling
concept used in SDL.

External
inputs

Number of unique external inputs to a module.

External
outputs

Number of unique external outputs to a module.

Internal
signals

Number of unique internal signals within a module.

Table 2
Code measures collected

LOC Number of lines of code.
Var Number of variables in the code.
Retrieve Signal sending of a so-called combined signal (application

dependent).
Enter Signal reception in the code.
Send A signal sending in the code.
If…goto Conditional goto in order to break an if-construct (see

above).
Branch on Conditional jump based any defined condition in the

program.
If Number of if-statements in the code.
Goto Unconditional goto (see above).



The information in Table 3 should act as a complement to
the correlation study presented below. It should, however,
be noted that there is of course clear relationships between
some concepts from design with concepts in code. The

situation may, however, occur that new concepts are
introduced and they may be a combination of design
concepts, hence there may be situations which may be diffi-
cult to explain logically, and in these situations the correla-
tion studies are invaluable.

2.3. Correlation analysis

Software metrics are often strongly interrelated or
demonstrate a high degree of multicollinearity [8]. The
correlation analysis for our data is presented in Table 4,
and some of them are highly intercorrelated. However,
some of these high correlations are due to the same type
of metrics selected in two different phases, for example,
Inputs and Enter, and should therefore have more or less
the same value. The intercorrelations imply a need for data
screening and reduction techniques. Factor analysis and
especially principal components have gained some interest
in the software engineering literature to handle the intercor-
relation. However, there exists a number of problems with
such techniques [9]. First of all, it is necessary that the
principal components underlying the software complexity
data are stable across software products, which appear not to
be the case [10]. Principal components also require that the

M. Zhao et al. / Information and Software Technology 40 (1998) 801–809 803

Table 3
Logical relationships between metrics

SDL-pages vs LOC These are highly related as both
are size measures.

SDL-pages and LOC vs all
measures

All measures more less increase
the size of the modules, since
they are countable, and hence
they are highly related to size.

Outputs vs External outputs Outputs describes the number of
symbols and External outputs is
the declarations of unique
signals.

Inputs vs External inputs See Outputs vs External outputs.
Inputs vs Enter The Enter statement is primarily

the implementation of the Inputs.
Some differences may occur but
basically there is a clear
correspondence between these
concepts.

Outputs vs Send See Inputs vs Enter.
If (in design) vs If (in code) See Inputs vs Enter.

Table 4
Correlations between the number of faults and metrics and intercorrelations among metrics

Faults SDL pages Tasks Outputs Inputs If States McCabe External inputs External outputs

Faults 1.000
SDL pages 0.520 1.000
Tasks 0.419 0.811 1.000
Outputs 0.524 0.836 0.445 1.000
Inputs 0.601 0.856 0.573 0.948 1.000
If 0.549 0.893 0.891 0.649 0.728 1.000
States 0.393 0.642 0.366 0.702 0.690 0.485 1.000
McCabe 0.542 0.926 0.912 0.737 0.849 0.914 0.591 1.000
External inputs 0.620 0.722 0.338 0.918 0.911 0.535 0.820 0.655 1.000
External output 0.601 0.787 0.411 0.949 0.936 0.619 0.754 0.709 0.981 1.000
Internal signals 0.602 0.493 0.386 0.414 0.464 0.426 0.687 0.483 0.519 0.426
LOC 0.614 0.878 0.687 0.722 0.761 0.785 0.534 0.794 0.690 0.753
Var 0.674 0.837 0.679 0.752 0.787 0.716 0.589 0.807 0.709 0.725
Retrieve 0.155 0.523 0.538 0.329 0.267 0.444 0.316 0.477 0.218 0.282
Enter 0.645 0.694 0.302 0.897 0.890 0.527 0.818 0.622 0.989 0.961
Send 0.543 0.819 0.417 0.926 0.860 0.660 0.673 0.662 0.890 0.936
If…Goto 0.571 0.781 0.687 0.614 0.727 0.764 0.420 0.781 0.610 0.681
Branch on 0.598 0.709 0.568 0.675 0.787 0.589 0.716 0.754 0.790 0.760
if 0.534 0.788 0.698 0.625 0.750 0.766 0.479 0.806 0.626 0.688
Goto 0.662 0.721 0.586 0.603 0.719 0.678 0.431 0.714 0.644 0.688

Internal signals LOC Var Retrieve Enter Send If…Goto Branch on If Goto
Internal signals 1.000
LOC 0.468 1.000
Var 0.630 0.882 1.000
Retrieve 0.183 0.556 0.557 1.000
Enter 0.557 0.664 0.675 0.132 1.000
Send 0.391 0.778 0.697 0.380 0.871 1.000
If…Goto 0.391 0.937 0.774 0.400 0.595 0.645 1.000
Branch on 0.622 0.760 0.808 0.315 0.776 0.608 0.752 1.000
If 0.379 0.921 0.777 0.415 0.610 0.631 0.986 0.805 1.000
Goto 00.405 0.914 0.803 0.329 0.638 0.619 0.965 0.810 0.955 1.000



data are scaled, while the models cannot be used to explain
variations outside the data range from the given data set.
Further, we strongly believe that a prerequisite for accepting
any model is that we can interpret, understand and explain
why a model is good, which is very difficult with models
based on principal components. The correlation analysis in
Table 4 is therefore essential when the prediction models are
interpreted. Even though there are demarcations with regres-
sion models, such as unstable correlation coefficients, we
believe such models are more appropriate for our objectives.

Table 4 was made from 27 modules because when all
modules were used, the correlations between the number
of faults and the metrics are very low (only two figures
larger than 0.5, but still less than 0.6). Note that the main
objective of this paper is to build prediction models and in
particular to compare different models derived based on
design metrics, code metrics and a combination of design
and code metrics, respectively. Thus, we have taken the
decision to remove one outlier, i.e. one module was deleted
in order to provide a better basis for comparison. We would
like to capture the general behaviour and goodness of
models derived using different metrics, hence we would
like to avoid that the models are governed by one or two
individual data points. This is our motivation for removing
one outlier.

When the correlations provided in Table 4 were studied,
we noted that the metrics generally do not have very high
correlations with the number of faults. For example, the
correlation coefficient betweenRetrieveand the number of
faults is 0.155. We believe that metrics such asRetrieveare
not useful in building a linear regression model of the fault
content. Therefore, a threshold of 0.5 was selected for
screening the metrics before a formal analysis took place.
Specifically, three metrics,Tasks, States, Retrieve, were
deleted from building the prediction model according to
this threshold.

3. Model building

In this section, we consider selecting the best regression
equations using the design metrics, code metrics and all
metrics, respectively. The regression equations are best in
the sense that specific statistical procedures are applied for
selecting variables in the regression. Note that there is no
unique statistical procedure doing this. We use the stepwise
selection procedure to build the regression models, see e.g.
[11] for a detailed description of this procedure. It must also
be noted that the main objective is relative comparison
between the different models; the actual models are of
minor interest in this paper.

3.1. Stepwise selection procedure

Let Y be the number of faults andX1, X2,…,Xk be the
metrics concerned. We want to find, by the stepwise
selection procedure, a linear model betweenY and a subset

of Xis:

Y � b0 1 b1X1 1 b2X2 1 …1 bqXq;q # k: �3:1�
The definitions and explanations of the statistical meth-

ods are provided in Appendix A (Table A1).
The stepwise selection procedure starts with selecting the

metric with the highest correlation withY and then the
regression equation is determined. If anF-test shows that
the regression equation is not significant, the procedure
stops. Otherwise, this metric is retained and a search is
conducted to identify the next metric to include in the
model. At this stage, the partial correlation coefficients of
the metrics not in the regression equation are examined. The
metric with the highest partial correlation coefficient withY
is selected and a new regression equation is fitted. The
regression is checked for significance, and the partialF-
values for the variables in the equation are examined. The
lowest partialF-value is compared with the predetermined
F percentage point, and the corresponding metric is retained
or rejected according to the test result. The procedure
continues to search new predictors until no new metrics
can enter the regression model.

It should be noted that at each stage, the partialF criterion
for each variable in the regression should be checked.
Therefore, one variable already in the regression may also
be removed in the stepwise procedure.

3.2. Model using design metrics

When we first applied the stepwise procedure to the
design metrics, an extremely large residual was found, see
Fig. 1. This special observation also causes the same
problem with the code metrics. Based on the same reason
when the first outlier was deleted, we deleted this outlier
from the following analysis.

For a given significance level 0.1, we carried out the
stepwise procedure for the design metrics and two predictor
metrics are selected from the eight design metrics (two
removed due to low correlations with the number of faults).
They areExternal inputsandInternal signals. The values of
the parameters in the regression equation is given in Table 5.

For this regression model, the measure of goodness-of-fit
(R2-statistic) is 0.63. At the significance level 0.1, the criti-
cal value ofF-test is 2.55. TheF-value is equal to 19.5 that
is much larger than the critical value of theF-test, so the
regression is significant. More detailed results of statistical
analysis are given in Appendix B.

3.3. Model using code metrics

Only one code metric is selected by the stepwise proce-
dure, when using the same significance level of 0.1 as when
building the design metric model. The model parameters are
given in Table 6.

TheF-value of 30.3 is much greater than the critical value
of F-test which is equal to 2.93 in this case. The built model
is therefore acceptable. TheR2-statistic is 0.558.

M. Zhao et al. / Information and Software Technology 40 (1998) 801–809804



3.4. Model using both design and code metrics

Two metrics are selected from the 16 metrics, when the
stepwise procedure with significance level of 0.1 is used.
The model parameters are given in Table 7. In particular, we
may note that the model includes one design metric and one
code metric.

TheR-statistic of this model is as high as 0.68 and theF-
value is 24.6. TheF-test shows that the regression is signif-
icant (critical value is equal to 2.55).

This model is better than the two previous models, since it
gives a smaller estimate of the variance (the estimate is
equal to 9.19) and large value of theR-statistic. In particular,
the combined model is obviously better than the design
model. Both the design model and the combined model
have the same number of predictors, hence a direct compar-
ison of theR-statistics andF-values is possible. We can,
however, note that the improvement of the combined
model is limited.

The comparison between the design model and code
model is not straightforward because of different number
of predictors. The design model has a higherR-statistic
value and smaller variance estimate, but the code model
has only one predictor. Therefore, it is reasonable, from a

practical viewpoint, to conclude that the early estimate from
a design model (at least for this particular data set)
outweighs the other advantages with the code model.

4. Model interpretation

Model interpretation is not only essential, but also a
prerequisite in any engineering discipline. If we are not
able to understand and explain the outcome of quantitative
analyses, the result and contributions of the work are both
limited and questionable. The purpose of the model building
is not only to identify cause-and-effects, but also to direct
and support improvement efforts. Hence, few manager are
prepared to take action based on a model that one cannot
interpret.

The objective of this paper was to study the differences
between design and code metrics, and their ability to predict
the number of faults. Reviewing the correlations between
the design metrics in Table 4, it is evident that no single
metric can fully explain the variance, and that the metrics
are highly intercorrelated. However, some of the metrics
show a relative high correlation with faults, but a relative
low correlation with each other, e.g.External inputsand
Internal signals. If such metrics were combined they may
be able to explain more of the overall variation. The result
from the stepwise selection procedure for the design metrics
includes these two metrics.

Interpretation design metrics: the values of theR-statistic
in the models cannot directly be compared with the values in
Table 4, but have some level of explanatory ability. That is,
the combination of the two design metrics is better, but not
drastically. Both metrics are based on extraction of signal
handling, which in other studies have shown to be an area
associated with severe problems [5]. However, our experi-
ence from root-cause-analysis and model building also indi-
cates that the percentage of the faults associated with the
logical modelling is high. It is therefore a bit surprising that
metrics capturing the logical structure, e.g.If or McCabe,
were not included.

Interpretation code metrics: the correlations in Table 4
show the same patterns for the code metrics as for the design
metrics, however, the code metrics have slightly higher
correlation with the number of faults. The only code metric
included in the model isVar. Faults associated with vari-
ables and signals are logical faults — one of the most
frequent classes of faults. Further, variables are only
modelled during the coding phase. Therefore, it appears to
be quite reasonable thatVar was included in the model.

M. Zhao et al. / Information and Software Technology 40 (1998) 801–809 805

Table 6
Selected predictor code metrics and the coefficients

Code metrics Const. Var

Parameters 2 1.9490 0.0576

Table 7
Selected predictor design and code metrics and the coefficients

Metrics Const. Internal signals Var

Parameters 2 1.3907 0.8480 0.0352

Fig. 1. Plot of residuals (Ŷi-Yi) against the fitted valuesŶi from the design
metric model using 27 observations.

Table 5
Selected predictor design metrics and the coefficients

Design metrics Const. External input Internal signal

Parameters 0.4978 0.0636 1.0726



However, it was also a bit surprising that no metric, e.g.
Branch on, capturing the logical structure was selected in
this phase either. It has, however, a high correlation with
Var which may explain why it is excluded from the model.

It is important to note that we do have high intercorrela-
tions between variables, and we have chosen to include the
variable with the highest correlation in the model although
we might as well have chosen another variable as the two
variables are highly correlated. Further, it is important to
stress that prediction models of this type must be continu-
ously evaluated and updated to take evolution into account.
Moreover, we would like to emphasize that the objective is
to compare design and code metrics, and not to find and
recommend a particular model.

Comparing the separate design and code metrics analyses
we conclude that design metrics are as good as code metrics
in predicting the number of faults, even though the correla-
tion values are not very high. However, given that only
product metrics are included higher correlation values are
not very likely to be found. To further improve the model,
we believe that process and resource attributes should be
included, rather than more refined metrics or extensive
models based on product metrics.

Interpretation design and code metrics: in the final analy-
sis (design and code model) two metrics were selected, one
from each phase. The metrics capture different aspects and
were identified in the previous analyses. Thus, it is quite
reasonable that they have been included. This model is
generally better than the previous two, it is hence
preferable to use this model. However, the improvement
compared with the design model is small, and the
advantage of having a predictive model already in the
design phase is obvious.

5. Summary and conclusion

We have conducted the comparison between design and
code metrics based on data collected from a real project. By
building a prediction model of the fault content, we can
partially answer the questions discussed in the introduction.
It should be noted that our conclusion is made based on one
data set. It is hence difficult to claim that the results are
general. To obtain general results, further studies are
needed. It is reasonable to believe that similar results should
be obtained for other releases of the same system, and also
for other systems in the same environment being developed
with the same process. The generalizability outside the
company is, however, very difficult, but we believe that
the findings are interesting enough for others to conduct
similar studies. It is important to get estimations and predic-
tions early, hence the findings indicate that such opportu-
nities may exist.

Comparing the separate design and code metrics
analyses, we conclude that design metrics are as good as
code metrics in predicting the number of faults, although the

correlation values are not impressing. However, little
improvement can be obtained by considering the design
metrics and code metrics together. This result indicates
that a design metric model could be very useful since it
can be applied much earlier than the code metric model.
In particular, it indicates that the structural properties of
the software influencing the fault content is mainly estab-
lished already during the design phase. From this empirical
study, we have seen that there is not much loss of informa-
tion in terms of modelling the fault content if we ignore the
code metrics.

To further improve the model we believe that process and
resource attributes should be included, rather than more
refined metrics or extensive models based on product
metrics.

Appendix A. Concepts and symbols in data analysis

M. Zhao et al. / Information and Software Technology 40 (1998) 801–809806

Table A1

Names and symbols Description

Ŷi, Ŷi, Ŷ Observations on responses, the fitted value and
sample mean.

Sum of squares due to
regression (SSD)

Xn
i�1

�Ŷi 2 �Y�2

with the degree of freedomq 2 the number of
parameters in regression model.

Sum of squares due to
regression (SSR)

Xn
i�1

�Ŷi 2 Y�2

with the degree of freedom (n 2 q 2 1). The
total variation ofY can be decomposed as the
sum of SSD and SSR.

R2 Xn
i�1

�Ŷi 2 �Y�2=
Xn
i�1

�Yi 2 �Y�2

used as a measure for goodness of fit.

F-value, critical value,
andF-test

F � �SSD�=q
�SSR�=�n 2 q 2 1� ;F�1 2 a; q; n 2 q 2 1�;

the 100(12 a)% point of theF-distribution;
WhenF $ F(1 2 a;q,n 2 q 2 1), the
regression is said to be significant under the
significance levela.

Partial correlation
betweenXj and
X1,…,Xp

Correlation between the residuals ofY
regressed onX1,…,Xp, and the residuals ofXj,
regressed onX1,…,Xp.

PartialF-value and
test associated with a
new variableXj

SSD including Xj 2 SSDwithoutXj
SSR including Xj �=n :

When it is greater thanF(1 2 a;1,n), the
variableXj is selected into the model. Heren is
the degree of freedom of the SSR includingXj.



Appendix B. Statistical analysis results

B.1. Design metrics model

The stepwise procedure produced the following model:

number of faults� 0:49781 0:0636p External inputs

1 1:0726p Internal signals

The R2-statistic, which is a measure for model

goodness-of-fit, is 0.63. Table B1 displays the analysis of
variance as usual.

The estimate of the variance, made from the mean square
of residuals, is 10.7. At the significance level 0.1, the critical
value forF-test is 2.55. TheF-test is 2.55. TheF-value is
equal to 19.5 which is much larger than the critical value, so
the regression is significant.

If we study the plot of the residuals against the fitted
values, see Fig. 2, there is a need to judge whether or not
they are a sample from the normal distribution. The normal
plot of the residuals displayed if Fig. 3 shows a good fit.
Therefore, we can accept this model.

B.2. Model using code metrics

Using the stepwise procedure with significance level 0.1,
only one code metric is selected. The model is

number of faults� 21:9491 0:0576× Var

TheF-value of 30.3 is much greater than theF-test critical
value of 2.93. The model passes the overallF-test. TheR2

note statistic is 0.558.
The residual plot and normal plot indicate that the model

is acceptable (Fig. 4 and Fig. 5).

M. Zhao et al. / Information and Software Technology 40 (1998) 801–809 807

Fig. 2. Plot of residuals (Ŷi-Yi) against the fitted valuesŶi from the design
metric model.

Fig. 3. Normal plot of residuals from the design metric model.

Table B1
Analysis of variance table for the design metric model

Source of variation Degree of freedom Sum of square Mean square F-value

Due to regression 2 416.4 208.2 19.5
About regression (residual) 23 246.1 10.7
Total, corrected for mean Y¯ 25 662.5



B.3. Model using both design and code metrics

When the stepwise procedure with significance level of
0.1 is carried out for all metrics, two metrics are selected
from the 16 metrics. In particular, we can note that the
model includes one design metric and one code metric.

number of faults� 21:39071 0:848× internal signals

1 0:0352× Var

TheR2-statistic is as high as 0.68 and theF-test shows that
the regression is significant (F-test critical value 2.55 and
F-value 24.6). The residual plot in Fig. 6 and normal plot
in Fig. 7 indicate that this is an acceptable model.

M. Zhao et al. / Information and Software Technology 40 (1998) 801–809808

Table B2
Analysis of variance table for the code metric model

Source of variation Degree of freedom Sum of square Mean square F-value

Due to regression 1 369.8 369.8 30.3
About regression (residual) 24 292.6 12.2
Total, corrected for mean Y¯ 25 662.5

Table B3
Analysis of variance table for the design and code metric model

Source of variation Degree of freedom Sum of square Mean square F-value

Due to regression 2 451.2 225.6 24.6
About regression (residual) 23 211.3 9.19
Total, corrected for mean Y¯ 25 662.5

Fig. 4. Plot of residuals againstŶi from the code metric model.

Fig. 5. Normal plot of residuals from the code metric model.



References

[1] N. Ohlsson, M. Helander, C. Wohlin, Quality improvement by iden-
tification of fault-prone modules using software design metrics. Proc.
6th International Conference on Software Quality, Ottawa, Canada,
1996, pp. 1–13.

[2] W. Gibbs, Software’s chronic crisis. Scientific American, September
(1994), 86–94.

[3] I. Sommerville, Software Engineering, Addison-Wesley, Reading,
MA, 1996.

[4] Lennsellus, B. Software complexity and its impact on different soft-
ware handling processes. Proc. 6th International Conference on Soft-
ware Engineering for Telecommunication Systems, 1986, pp. 148–
153.

[5] N. Ohlsson, H. Alberg, Predicting fault-prone software modules in
telephone switches, IEEE Transactions of Software Engineering 22
(12) (1996) 886–894.

[6] ITU, Recommendation Z100: SDL — Specification and Description
Language.

[7] T.J. McCabe, A complexity measure, IEEE Transactions on Software
Engineering 4 (2) (1976) 308–320.

[8] J.C. Munson, T.M. Khoshgoflaar, The detection of fault-prone
programs, IEEE Transactions on Software Engineering 18 (5)
(1992) 423–433.

[9] N. Ohlsson, M. Zhao, M. Helander, Application of multivariate analy-
sis for software fault prediction. Technical Report LiTH-IDA-R-96-
30, Linköping University, 1996.

[10] T.M. Khoshgoflaar, D.L. Lanning, Are the principal components of
software complexity data stable across software products? Proc. of the
Second International Software Metrics Symposium, October 24–26,
London, England, 1994, pp. 61–72.

[11] N. Draper, H. Smith, Applied Regression Analysis. Wiley, New York,
1981.

M. Zhao et al. / Information and Software Technology 40 (1998) 801–809 809

Fig. 6. Plot of residuals againstŶi from the design and code metric model.

Fig. 7. Normal plot of residuals from the design and code metric model.


