C. Wohlin and A. Wesslén, "Understanding Software Defect Detection in the
Personal Software Process”, Proceedings IEEE 8th International Symposium on
Software Reliability Engineering, pp. 49-58, Paderborn, Germany, 1998.

Understanding Software Defect Detection in the Personal Software Process

Claes Wohlin and Anders Wesslén
Department of Communication Systems
Lund University
Box 118, SE-221 00 Lund, Sweden
E-mail: (claes.wohlin, anders.wesslen)@tts.lth.se

Abstract

There is a general need to understand software defects and
our ability to detect defects during different activities. This
is particularly important in relation to software process
improvement, where one objective may be to decrease the
number of defects. The Personal Software Process (PSP)1
has gained attention during the last couple of years as a
way to individual improvement in software development.
Thus, the PSP is an interesting starting point to understand
software defects and in particular the detection process.
This paper presents a study of software defect detection for
59 students taking a PSP course. In summary, the study
provides valuable insight into software defect detection in
the PSP. Some of the results are interesting not only for the
PSP, but from a general perspective in our understanding
of software defect detection. The understanding of software
defects forms the basis for improving the reliability of
software.

1. Introduction

Software failures are costly. Reports regarding software
problems are published regularly, ranging from minor
issues to the year 2000 problem. Thus, a better understand-
ing of software defects, their causes and possible improve-
ments in the area are essential. Software failures are
related to the reliability of the software.

Reliability is an external attribute. A program has a cer-
tain reliability from the perspective of the user. The inter-
nal attributes related to reliability are defects or faults.

1.The Personal Software Process and PSP are
service marks of Carnegie Mellon University.

Defects are used throughout this paper when referring to
the internal attribute. To improve the understanding of
software reliability, an understanding of software defects is
required. The latter includes all aspects related to defects,
for example, introduction and detection. The main focus of
this paper is the detection process.

This paper focuses in particular on the understanding of
the defect detection process when using the Personal Soft-
ware Process (PSP) [Humhprey95]. The objective is to
study detection within the PSP, but also to use that under-
standing and experience as a basis for a more general
understanding of software defect detection.

The paper is organised as follows. In Section 2, the PSP
and the use of the PSP for empirical studies are discussed.
Section 3 discusses the case study in terms of context and
background. The data analysis is presented in Section 4,
and Section 5 discusses the findings and future work.

2. The Personal Software Process and empiri-
cal studies

2.1. The Personal Software Process

The Personal Software Process (PSP) has gained lots of
attention since it became publicly available [4]. The objec-
tive of the PSP is basically to provide a structured and sys-
tematic way for individuals to control and improve their
way of developing software. We have seen papers, for
example [5, 3], presenting the outcome of the PSP, both
from students and industrial software engineers taking the
PSP as a course. The PSP is currently used in a number of
universities and industry is also becoming interested in
applying the PSP.

At Lund University, we run the PSP as an optional
course for students in the Computer Science and Engineer-

ing program and the Electrical Engineering program. Most
students take the course in their fourth year, and the course
is taken by 40-70 students. The course is run for the second
time during 1997-98. The main objective of the course is
to teach the students the use of planning, measurement,
estimation, postmortem analysis and systematic reuse of
experiences. It is from a course perspective more impor-
tant to teach the students the techniques packaged within
the PSP than actually teaching them the PSP for future use.
The PSP includes seven incremental steps in which the
personal software process is gradually improved. The
seven increments include four main increments denoted by
PSPO, PSP1, PSP2 and PSP3. The main differences
between these are:
e PSPO - PSP1: Improved estimation techniques

e PSP1-PSP2: Introduction of reviews
e PSP2 - PSP3: Incremental development is introduced

More information concerning the PSP can be obtained
from [4, 6]. From a software defect detection perspective
the major change is between PSP1 and PSP2, although we
expect improvement regarding the number of defects
between all the different steps, since the software process
is improved.

In [4], the PSP is presented as a course, and this has
been the basis in the course at Lund University. The basic
course includes 10 programming assignments in which the
PSP is presented and incrementally introduced. Further-
more, the course includes five reports. Three of the assign-
ments use PSPO, PSP1 and PSP2 respectively, and the last
assignment is done using PSP3.

2.2. Empirical studies

The use of empirical studies is emphasised by many
researchers [1, 2] in order to turn software engineering into
a true engineering discipline.

Experiments and case studies will allow us to gain a
better understanding of relationships in software engineer-
ing and they will also allow us to evaluate different
hypotheses. Numerous books on design and analysis of
experiments in general are available, for example, [10],
and case studies are, for example, discussed in [13].

One major difficulty in empirical studies is the validity
of the results. In other words how do we interpret the
results and what conclusions can we draw? A particular
problem is, of course, to find suitable subjects (participants
in the experiment). It is desirable to use industrial software
engineers, but many times this is infeasible. A suitable
starting point is, therefore, many times to start with studies
at the universities using students as subjects, i.e. the stud-
ies are conducted in an educational context. The use of stu-
dents as subjects is, of course, a major threat to the
validity, but on the other hand it could be good to start with

a study in a university setting and based on the outcome we
can, as a part of a technology transfer process, replicate the
study in industry and then continue with a pilot project.

2.3. Case study research within the PSP

The PSP provides some interesting opportunities for
empirical studies with a well defined process, generally
available descriptions, and measurements as a central
theme in the process. This implies that as a natural part of
the PSP, data are collected, which can be used to increase
our understanding of software development. One advan-
tage of using the PSP as a context for empirical studies is
that it is well-defined, hence the design of an empirical
study is more or less given through the use of the PSP [4].
The study presented in this paper is one example of how
the PSP can be used as a context for case study research. It
is also possible to use the environment for experimenta-
tion. Some examples of using the PSP for experimentation
are presented in [7, 8].

The main objective is to improve our understanding of
the defect detection process in general and within the PSP
in particular. Thus, the intention is both to understand the
use of the PSP and to study the effect of techniques and
methods introduced through the different main increments
in the PSP, for example, the introduction of reviews
between PSP1 and PSP2. This is achieved through a series
of minor studies related to the defect detection process. In
this paper, four different aspects related to software defects
and defect detection are presented. The four aspects are:

» distribution of software defect detection. Where are
defects found? How does the distributions change as
the PSP is improved? This is further elaborated in
Section 4.1.

e defect evolution is discussed in Section 4.2. How
does the number of defects change over the 10 assign-
ments? Does the process improvement mean that the
number of defects decreases?

o defects and the main PSP steps. How does the defect
density change between PSPO, PSP1 and PSP2? How
does the cost of software detection activities evolve?
These issues are further discussed in Section 4.3.

e background of individuals versus the outcome in
number of defects and defect density. How does the
background of the individuals influence the number
of defects? How does the background affect the defect
density? Section 4.4 provides a discussion of these
issues.

3. Case study
3.1. Introduction

The case study is run within the context of the PSP.

Moreover, the study is conducted within a PSP course
given at the Department of Communication Systems, Lund
University, Sweden. The course was given in 1996-97, and
the main difference from the PSP, as presented in [4], is
that we provided a coding standard and a line counting
standard. Moreover, the course was run with C as a manda-
tory programming language independent of the back-
ground of the students. The PSP course is taken by a large
number of individuals. This particular year, we had 65 stu-
dents finishing the course. Thus, we have 65 participants
(subjects) in the study.

Data were collected according to the PSP [4] with some
minor additions. In order to achieve the objective of this
study, the following data are of particular interest:

e defects detected (total, review, compilation and test),

e program size (primarily to derive defect density),

e effort (or cost) spent on defect detection (minutes
spent in review, compilation and test), and
e individual background (seven variables are defined in
order to try to capture the experiences and knowledge
of the course participants).
The actual measures are discussed in more detail in
Section 4.

3.2. Planning

As part of the first lecture, the students were asked to
fill out a survey regarding their background in terms of
experiences from issues related to the course, for example,
knowledge in C. The general hypothesis based on experi-
ences is that the more experiences in the field the better
performance. The latter is here measured in terms of the
number of defects and the defect density. In particular, it is
expected that more knowledge in C will mean a lower
defect density. In other words, beginners in C are expected
to make more mistakes.

The background experiences are measured on an ordi-
nal scale with four classes. For example, the C experience
is measured using the following four classes, similar
classes are introduced for the other measures.

No prior experience.
Read a book or followed a course.

Some industrial experience (less than 6 months).

el A

Industrial experience.

No further planning was required as the data are col-
lected as an integral part of the PSP.

3.3. Validity evaluation

This is a difficult area. In our particular case, we have

several levels of validity to consider. Internal validity is
concerned with the course this year. External validity can
be divided into: students taking the PSP course in forth-
coming years, students at Lund University (or more realis-
tically to students from programs taking the PSP course),
the PSP in general, and for software development in gen-
eral.

The internal validity within the course is probably not a
problem. The large number of tests (equal to the number of
students) ensures that we have a good internal validity. It is
also probable that similar results will be obtained in the
forthcoming years the course is given.

Concerning the other threats to the external validity, it is
difficult to generalise the results to other students, i.e. stu-
dents not taking the course. They are probably not as inter-
ested in software development and hence they come from a
different population. The results from the analysis can
probably be generalised to other PSP courses. The study
presented is based on student data, and the results may be
slightly different when involving software engineers from
industry. The main results will, however, probably be
valid.

The results are found for the PSP, but they are likely to
hold for software development in general. This is moti-
vated by the following observations for the studies:

e There is, for example, no reason that people having
different background experience from a particular
programming language perform differently between
the PSP and software development in general. The
objective of the PSP is to scale down software devel-
opment to the individual level, hence it is reasonable
to believe that the findings can be generalised to soft-
ware development in general. A similar argument can
be given for any of the investigations presented here.

e The performance measures (number of defects and
defect density) can be collected for other environ-
ments than the PSP, and there is no reason that we
should not get a similar behaviour for another envi-
ronment. Thus, we believe that the results can be gen-
eralised to other contexts.

3.4. Operation

The subjects (students) are not aware of what we intend
to study. They were informed that we wanted to study the
outcome of the PSP course in comparison with the back-
ground of the participants, and our intentions of analysing
the data. They were, however, not aware of the actual stud-
ies. The students, from their point of view, do not primarily
participate in an empirical study; they are taking a course.
All students are guaranteed anonymity.

The survey material is prepared in advance. Most of the
other material is, however, provided through the PSP book
[4]. The empirical study is executed over 14 weeks, where

the 10 programming assignments are handed in regularly.
The data are primarily collected through forms. The 10
programming assignments are mostly small statistical pro-
grams. The complexity and difficulty of the programs vary
slightly. Interviews are used at the end of the course, pri-
marily to evaluate the course and the PSP as such.

3.5. Data validation

Data were collected for 65 students. After the course,
the achievements of the students were discussed among the
people involved in the course. Data from six students were
removed, due to that the data were regarded as invalid or at
least questionable. Students have been removed not
because the evaluation was based on the actual figures, but
because of our trust in the delivered data. The six students
were removed due to:

e Data from two students were not filled in properly.

e One student finished the course much later than the
rest, and he had a long period where he did not work
with the PSP. This may have affected the data.

e The data from two students were removed based on
that they delivered their assignments late and required
considerably more support than the other students,
hence it was judged that the extra advice may have
affected their data.

e Finally, one student was removed based on that his
background is completely different than the others.

This means removing six students out of the 65, hence
leaving 59 students for statistical analysis and interpreta-
tion of the results.

4. Data analysis
4.1. Defect distribution

The first step in understanding software defects in gen-
eral and their detection in particular is to use descriptive
statistics. This means plotting the defect data. In PSPO and
PSP1, the main defect detection methods are compilation
and test. From the course, data for PSPO and PSP1 are
available from six assignments (denoted 1A-6A). In PSP2,
design and code reviews are introduced. It must be noted
that the reviews are introduced before compilation. In other
words, the code is reviewed before compilation. Data for
PSP2 are available for three assignments (denoted 7A-9A).
The introduction also means that new types of defects are
found. The reviews are the only means of detection defects
related to the coding standard, hence defects related to not
following the coding standard have not been detected
before.

The percentages of defects found using the different
detection methods are plotted in Figure 1. In Figure 1a, the
data for PSPO and PSP1 are plotted indicating that 58% of
the defects are found in compilation and 42% during test-
ing. The relationship between defects found in compilation
and testing is interesting. The factor is: (Number of defects
found in compilation) / (Number of defects found in test) =
1.38. In Figure 1b, design and code reviews are added to
the picture. Most defects are still found during compilation,
but it is interesting to note that the relationship between
defects found in compilation and test respectively has
changed. The factor is now: (Number of defects found in
compilation) / (Number of defects found in test) = 1.17.
This implies that the reviews have found a larger propor-
tion of defects that would have been found in compilation
than in test. This is not according to the objectives, since it
is obvious that the compiler is much more effective in find-

Figure 1a and 1b. Distribution of software defect detection.

ing certain types of defects than the human being, hence
indicating that the reviews have to be more focused on
defects that escapes the compiler. Several other studies can
be found in the literature regarding the efficiency of
reviews and other questions related to reviews, see, for
example, [11, 12]. The former includes a comparison
between different defect detection methods for require-
ments specifications.

To further increase the understanding of the distribution
of defects found in compilation, test and in totality, the dis-

tribution of the number of students finding a certain
number of defects is investigated. The distribution of the
number of defects for compilation, test and in total are
plotted for PSPO, PSP1 and PSP2 separately. These plots
are shown in Figure 2.

From Figure 2, it can be seen that the number of stu-
dents finding fewer compilation defects seems to increase;
the highest bar in the diagram changes from 60 to 40 and
then to 20 defects in PSP2. This is further investigated in
Section 4.3, where the different main steps of the PSP are

Figure 2a. Compilation, test and defects in total for PSPO.

Figure 2b. Compilation, test and defects in total for PSP1.

Figure 2c. Compilation, test and defects in total for PSP2.

compared in more detail. The defects found in testing seem
to have a similar tendency, although not as clearly. The
picture gets more blurred when looking at the total number
of defects. There seems to be an improvement between
PSPO and PSP1. It is, however, more difficult when com-
paring PSP2 with the previous instantiations (PSPO and
PSP1). A potential explanation is that in PSP2 reviews are
introduced and new types of defects are found, for exam-
ple, deviations from the coding standard.

It should also be noted that in the diagrams in Figure 2,
two outliers have been removed. One individual had 386
compilation defects for the three programs developed
using PSP2, and the same individual has slightly more than
600 defects in total for these programs. The values are
extremely high in comparison with the other students, but
the data are believed to be correct. A potential explanation
is that the student changed his behaviour in particular the
logging of defects when entering PSP2. It should also be
noted that the student was among the students having the
largest problem with C throughout the course.

The above diagrams in Figure 1 and Figure 2 have pro-
vided a basic understanding of the distribution and evolu-
tion of software defect detection as the PSP evolves. In the
following sections, different issues are addressed more for-
mally and in more detail.

4.2. Defect evolution

An important question from a PSP perspective is
whether the quality of the software increases as the process
is improved. The question is also valid from a more gen-
eral perspective, since it has to do with process improve-
ment and its effect on quality. The main quality measure

here is defect density. A major drawback with defect den-
sity as a measure is that it only focuses on defects found,
and it does not take neither defects not found nor the effect
in operation of the defects into account. It is, however, a
reasonable measure on an individual level within the PSP
course, since the programs are rather small (average size:
100 new and changed LOC), and all defects are assumed to
have been found after testing and usage. It should be noted
that most of the programs are reused in later assignments,
hence supporting the assumption that all defects actually
have been found, and that defect density is a relevant
measure.

The average defect density for the 59 students and its
evolution over the 10 assignments are shown in Figure 3.

In Figure 3, it can be seen how the general trend of
defect density decreases through the 10 assignments,
although when looking at the different main steps of the
PSP, it seems like the number of defects increases with the
introduction of PSP2. A potential explanation is, as stated
above, the introduction of reviews and hence introduction
of new defect types, and an additional explanation is the
high values discussed as outliers above. This does, how-
ever, not explain the result of assignment 10 when using
PSP3.

In order to model the decrease in defect density, linear
regression is used. The linear model becomes:

DefectDensity = 105,9 — 4,687 x ProgramNumber
Eq. 1
The model is significant (p = 0.0046), and R-square

(quadratic correlation coefficient) is equal to 0.654. It is
hence quite clear that the defect density decreases with the

Figure 3. The trend of defect density.

assignments. From the model in Eq. 1, it is interesting to
note that for each assignment the average defect density
(defects/KLOC) is decreasing with 4.7 defects. The linear
model is expected to become invalid if more assignments
were carried out. The average defect density is expected to
reach a plateau, hence breaking the decreasing trend.

A major problem is to actually explain the behaviour in
Figure 3. Several explanations are possible, or combina-
tions of them. The following three explanations are
believed to have interacted:

e programming learning effect,

This includes both the learning effect due to that sev-
eral students were novices in C, and the general
improvement in programming skills acquired by pro-
gramming regularly. The difference between students
having different experiences in C is addressed in Sec-
tion 4.4. The general improvement in programming
skills through the course is more difficult. The stu-
dents are, however, believed to have improved their
skills through the course, since most of them had not
programmed recently. The PSP course is read in their
fourth year at the university, and the programming
courses are primarily taught in the first and second
year.
e PSP learning effects.
This effect includes that the students become more
familiar with process descriptions, templates and pro-
cedures for the PSP in general. Initially in the PSP, it
is several concepts to understand and moreover the
students must understand the type of assignments
they are given. It is difficult to judge how much this
learning effect affects the defect density. It is probably
the least contributing effect, but it can not be dis-
missed.
¢ PSP improvement effects.

This is the effect to which it would be beneficial to
attribute the improvement in defect density, since it
would imply that the PSP as such improves software
development. It is unfortunately not possible to distin-
guish this effect from the effects above.

Thus, it is possible to show that the defect density
decreases, and that the decrease is significant. It is, how-
ever, not possible to distinguish different effects from each
other, at least not in this particular case.

To further understand the improvement, it is possible to
test different hypotheses regarding improvement between
the main steps in the PSP. This is further discussed in the
subsequent section.

4.3. Change PSPO-PSP1-PSP2

In order to evaluate the differences between PSPO,
PSP1 and PSP2 more formally, hypothesis testing is

applied. A statistical test is applied to show the differences
with a statistical significance. The general hypothesis is
that there is no difference between PSPO, PSP1 and PSP2.
More formally:

¢ HO: Measure_0 = Measure_1 = Measure_2

where Measure denotes any measure to be compared
between the different main PSP steps. The alternative
hypothesis is:

e HA: Measure 0 | Measure_1 or Measure 0 |
Measure_2 or Measure_1 | Measure_2.

The objective is to be able to reject HO and show any
part of the alternative hypothesis with a statistical signifi-
cance.

Five “goodness” measures were defined to investigate
the differences between PSP0, PSP1 and PSP2. They are:

« Defect density in compilation

e Defect density in testing
» Defect density in total

For PSPO and PSP1, the total number of defects is
equal to the sum of defects found in compilation and
testing, and for PSP2, review defects are also
included.

e Quality cost/ line
The quality cost is measured in terms of effort or
more specifically the minutes spent on defect detec-
tion activities (review, compilation and testing). The
objective of the measure is to capture the effort
needed for defect detection per LOC for PSP0, PSP1
and PSP2 respectively.

e Quality cost / defect

The quality cost is measured as for the previous meas-
ure, but instead the cost is normalised with the
number of defects.

In order to understand the dimensions captured by the
five measures defined, a principal component analysis
(PCA) is carried out using an orthogonal transformation
solution with varimax [9]. The results of the PCA is pre-
sented in Table 1.

From Table 1, it is clear that two main aspects are meas-
ured, namely defect density and quality cost, see grey cells
in Table 1.

For each of the five measures, a factorial ANOVA
(ANalysis Of VAriance) is applied based on having three
treatments (PSPO, PSP1 and PSP2) for each of the varia-
bles. o is set to 0.05, i.e. if the p-value for the ANOVA is
less than 0.05 then a Fisher PLSD test is applied to com-
pare the different main steps in the PSP pairwise. The out-
come of the Fisher PLSD test is also considered significant
on the 95% level. In Table 2, the p-value for the ANOVA,
the mean difference between the measures and whether the
difference is significant or not are presented for the five
“goodness” measures.

Table 1. PCA for “goodness” measures.

Variable Factor 1 Factor 2
Defect density in compilation | 0.891 -0.117
Defect density in test 0.846 0.155
Defect density in total 0.976 -0.014
Quality cost / line 0.382 0.848
Quality cost /defect -0.319 0.871

From Table 2, it is interesting to note that regarding
defects found in compilation and testing there is a signifi-
cant difference between PSPO and PSP1, and between
PSP1 and PSP2. Thus, there is a significant improvement
in terms of defect density for compilation and testing. For
the total defect density, it is only possible to distinguish
PSPO from PSP1 and PSP2. It is not possible to show any
significant difference between PSP1 and PSP2. This is
probably due to that new defect types are found in PSP2
than earlier. Furthermore, it is notable that the difference is
negative indicating that the defect density is higher for
PSP2 than for PSP1.

It is not possible to show any statistically significant
results based on ANOVA for the two measures related to
quality cost, although the difference between PSPO and
PSP1 is significant for Quality cost / line using the Fisher
PLSD test, see Table 2. Although the ANOVA test is not
significant, it is worth noting that the quality cost for PSP0
is higher per line of code than for the others. This seems
logical based on the discussions regarding learning effects

above, see Section 4.2. The difference between PSP1 and
PSP2 is negligible.

For the quality cost per defect, it is possible to see that
the cost is highest for PSP2 (indicated by a negative differ-
ence), while the difference between PSPO and PSP1 is
small. The result is discouraging, although the differences
are not significant, since improvements are expected.

The results indicate that the introduction of reviews has
not been cost-effective. The main reasons are probably that
new types of defects were found in PSP2, and perhaps
most importantly that the students during the review
mainly find defects which would have been detected by the
compiler. This observation is consistent with the result in
Section 4.1. It should be kept in mind that the result comes
partly from the requirement to perform the reviews prior to
compilation. Another conclusion from the observation is
that it is necessary to emphasise on focusing the reviews
on defect types which otherwise would not be found until
the test phase. It is important to note that we have several
explanations to the results. Thus, we should not be tempted
to conclude that reviews are not cost-effective. They must,
however, be better targeted at the “real” problems.

4.4. Experiences versus outcome

A basic assumption in statistical analysis is that the
sample being analysed is representative of the population
under study. The participants in the study are students, but
they still have different background and experience, for
example, knowledge in C. In order to understand the influ-
ence of previous experiences, a survey of the background

Table 2. Significant differences between PSPO, PSP1 and PSP2 respectively.

Variable and Mean

p-value for ANOVA Pairwise difference Significant?

Defect density in compilation PSPO-PSP1 17.288 Yes

p = 0.0001 (significant) PSP1-PSP2 13.978 Yes

Defect density in test PSPO-PSP1 8.522 Yes

p = 0.0005 (significant) PSP1-PSP2 8.691 Yes

Defect density in total PSP0O-PSP1 25.851 Yes

p = 0.0308 (significant) PSPO-PSP2 20.607 Yes
PSP1-PSP2 -5.205 No

Quality cost / line PSPO-PSP1 0.388 Yes, but ANOVA is

not significant

p = 0.067 (not significant) PSPO-PSP2 0.309 No
PSP1-PSP2 -0.069 No

Quality cost / defect PSPO-PSP1 -0.6 No

p=0.2609 (not significant) PSPO-PSP2 -4.492 No
PSP1-PSP2 -3.892 No

was filled out by all students at the first lecture. Seven
measures were defined. Five of them are measured on an
ordinal scale with grades 1-4, one measure is on a hominal
scale (two alternatives), and the seventh measure is also on
an ordinal scale in terms of number of courses taken in the
software area. The seven measures are:

e Study programme (scale CSE or EE)

The students come from both the Computer Science
and Engineering programme, and the Electrical Engi-
neering programme.

e General software engineering knowledge (grade 1-4)

e Courses in the software area (outcome in the range 2-
10)

e General programming skill (grade 1-4)

e Knowledge in C (grade 1-4)

¢ Knowledge in C++ (grade 1-4)

¢ Knowledge of PSP prior to the course (grade 1-4)

The objective is to study: the effect on the number of
defects and defect density based on experience.

Prior to the statistical analysis regarding statistically
significant relations, a PCA is carried out to understand the
dimensions captured with the survey. The result from the
PCA is presented in Table 3.

The measures fall nicely into two main factors, see grey
cells in Table 3. The first factor captures general software
knowledge and the second factor relates to programming
skills. The PSP measure is not possible to place in any of
the factors, and basically it depends on that most students
had no knowledge of the PSP, and hence the grades were
very skewed towards a low grade independent of the other
measures.

The objective is to compare the experience with the out-
come in terms of number of defects and the defect density.
A t-test was applied for the study programme, and an
ANOVA test was used for the other six measures. None of
the tests were significant, hence indicating that the previ-
ous experience and background had no statistical signifi-
cance on the defects. Moreover, it is particularly

Table 3. PCA for the experience of the course
participants.

Variable Factor 1 | Factor 2
Programme 0.823 0.343
Software engineering 0.864 0.206
Courses 0.829 0.381
Programming 0.499 0.663

C 0.062 0.890
C++ 0.101 0.921
PSP 0.477 -0.158

interesting to note that the previous knowledge in C did not
significantly affect the number of defects or the defect den-
sity. This is rather surprising, but it may indicate that the
PSP is rather robust and provides good support independ-
ently of the previous experience.

The relationships between background and experience,
and seven different performance measures are further dis-
cussed in [14]. For some of the other performance meas-
ures, for example productivity, there is a significant
relationship with the previous experience.

4.5. Summary of findings

The objective of the empirical study of the PSP was to
increase our understanding of the software defect detection
process. The intention was, by studying different aspects
of the process, to gain a greater understanding of both the
PSP as such and defect detection in general. As outlined in
Section 2.3, four different aspects have been studied. The
main results of the studies are summarized in Table 4.

A general discussion of the findings and the gained
understanding is provided in the subsequent section.

5. Discussion

From the study, it is possible to conclude that improve-
ments in defects are obtained as the PSP is refined. It is,
however, not possible to actually determine the actual
cause of the improvements. The quality cost does not
improve. This is seen both when normalising with LOC
and defects. The introduction of reviews means that sev-
eral defects that would have been found by the compiler

Table 4. Summary of findings.

Study Findings

Section 4.1: Defect dis- | The mean value and standard

tribution deviations of the defect distri-

(Descriptive statistics) bution decreases with the PSP
level.

Section 4.2 Defect evo- | The defect density decreases

lution with the PSP levels, and a

(Statistical association) | significant linear relation was
found.

Section 4.3: Change
PSPO-PSP1-PSP2
(Statistical inference)

A significance test shows that
there is a significant decrease
in defect density, but there is
no significant decrease in
quality costs.

Section 4.4: Experi-
ences versus outcome
(Statistical inference)

The individual experience
had no significant effect on
the defect density.

now are found using reviews. This is not cost-effective,

hence it is necessary to focus the reviews in the PSP better

on defects normally found in testing.

It is also notable that it is not possible to show any sta-
tistical significant relationship between background and
experience, and the number of defects and defect density.
In a more extensive study [14], it is shown that the experi-
ence does affect other performance measures.

The study has shown several interesting aspects regard-
ing the PSP. This includes the improvements observed, the
result in quality cost when reviews are introduced, and the
inability to show a relationship between experience and
defects. The obvious question based on the results is, of
course, if the results are valid for software development in
general. The following general observations are interesting
for further studies both within the PSP and for software
development in general:

e training, practice and improvement in combination
seem to lower the defect density. This is true for com-
pilation and test defects as well as with defects in
total.

e code reviews prior to compilation must be targeted
towards logical defects not detectable by the compiler
to be worthwhile.

e the number of defects and defect density are not in
isolation dependent on experience. In the enlarged
study [14], it is shown that the productivity is higher
for students with more experience. This seems to indi-
cate that the more experienced students produce more
in a shorter period of time, but they seem to make as
many mistakes.

Based on the experience from this study and other
empirical studies related to the PSP, we believe that the
PSP provides interesting opportunities to enhance our
understanding of software development. Thus, the inten-
tion is to continue to use the PSP as a context for empirical
studies. The objective is to replicate the current study,
extend it to other attributes, for example accuracy in esti-
mation, and to evaluate how the findings from the PSP can
be generalised to software development in general.

Finally, we would like to emphasise the need to first
understand software development (some results are pro-
vided in this paper) and relationships between different
parameters. The next step is to control software develop-
ment based on the understanding. The control forms the
basis for systematic improvement, including product, proc-
ess and people. The latter includes education and training
of the personnel. The process of understanding, control
and improvement are essential to master the challenge of
software development.

Acknowledgment

The authors are grateful to the students taking the class
for valuable comments throughout the course, and their
effort in collecting valid PSP data. This work is partly sup-
ported by the National Board for Industrial and Technical
Development (NUTEK), Sweden, grant 1K1P-97-09673
(project: IMPROVE).

References

[1] V.R. Basili RW. Seloy and D.H. Hutchens,
“Experimentation in Software Engineering”, |EEE
Transactions on Software Engineering, Vol. 12, No. 7, pp.
733-743, 1986.

[2] N. Fenton, S.L. Pfleeger and R. Glass, “Science and
Substance: A Challenge to Software Engineers”, IEEE
Software, pp. 86-95, July, 1994.

[3] P. Ferguson, W. Humphrey, S. Khajenoori, S. Macke and A.
Matvya, “Results of Applying the Personal Software
Process”, IEEE Computer, Vol. 30, No. 5, pp. 24-31, 1997.

[4] W.S. Humphrey, “A Discipline of Software Engineering”,
Addison-Wesley, 1995.

[5] W.S. Humphrey, “Using a Defined and Measured Personal
Software Process”, IEEE Software, pp. 77-88, May 1996.

[6] W.S. Humphrey, “Introduction to the Personal Software
Process”, Addison-Wesley, 1997.

[7] M. Host and C. Wohlin, “A Subjective Effort Estimation
Experiment”, Journal of Information and Software
Technology, Vol. 39, No. 11, pp. 755-762, 1997.

[8] M. Hoést and C. Wohlin, “An Experimental Study of the
Individual Subjective Effort Estimation and Combinations
of the Estimates”, Proceedings 20th International
Conference on Software Engineering, pp. 332-339, Kyoto,
Japan.

[9] S.K. Kachigan, “Multivariate Statistical Analysis - A
Conceptual Introduction” Radius Press, New York, USA,
1991.

[10] D.C. Montgomery, “Design and Analysis of Experiments”,
4th edition, John Wiley & Sons, 1997.

[11] A.A. Porter, L.G. \Votta, and V. Basili. “Comparing
Detection Methods for Software Requirement Inspections:
A Replicated Experiment”, IEEE Transactions on Software
Engineering, Vol. 21, No. 6, pp. 563-575, June 1995.

[12] A.A. Porter, H.P. Siy, C.A. Toman and L.G. Votta. "An
Experiment to Assess the Cost-Benefits of Code Inspections
in Large Scale Software Development”, IEEE Transactions
on Software Engineering, Vol. 23, No. 6, pp. 329-346, June
1997.

[13] R.E. Stake, “The Art of Case Study Research”, SAGE
Publications, 1995.

[14] C. Wohlin, “An Empirical Study of Personal Experience
versus Individual Programmer Performance”, Technical
report, Dept. of Communication Systems, Lund University,
1998 (in preparation).

