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Abstract 
Most software reliability models are 

applicable to a single piece of software. For more 
complex systems, Markov models have been 
studied assuming that complete reliability 
information at the module level is available. In this 
paper, we study an additive model which assumes 
that each subsystem or module undergoes 
independent testing and the reliability of the 
complete system has to be assessed. Subsystem 
reliabilities are mtimated and the system reliabiliw 
is assessed using the additive model. The approach 
is simple, but generic in a sense that existing 
models can be combined. An e.xample is also 
presented based on the log-power model. a model 
with simple graphical interpretation. and it shows 
that the modular information should he used-for 
system reliability assessment whenever such 
infirmation is available. 

1 Introduction 

In software reliability modelling and analysis, it 
is commonly assumed that, during testing, the 
software fails when an instruction containing a 
software fault is executed. We experience an intensity 
of software failure which can be denoted by A( f ) .  By 
correcting software fauls, this failure intensity can be 
reduced and the reliability increases. The expected 
number of failures in [ O , t ) ,  called the mean value 
function, is denoted as p ( t ) ,  and the relationship 
between d(t) and p(t)  is given as 
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Once p ( t )  or k ( t )  is known, future failure 
behavior can be predicted and reliability related 
decisions can be made. Most studies in software 
reliability modeling and estimation are concerned with 
different forms for k(t) or p(t). By making use of the 
testing data, unknown parameters are estimated, and 
hence, future failure behavior can be predicted, see e.g. 
the book by Musa et al. [lo] for a general treatment of 
this topic. 

Large software systems usually consist of a 
number of subsystems or modules which may be 
developed and tested in parallel. When two or more 
subsystems are put together, the reliability prediction 
is usually difficult. Because of the deadline to release 
the system, it may not be possible to collect enough 
data for making a system-level reliability assessment. 
If this is possible, then it is often necessary to 
determine the additional amount of testing so that the 
reliability requirement is met. The estimate may not be 
accurate if known information about the change of the 
system is not used, as most software reliability models 
assume that the testing is totally random and no new 
subsystems are added over the time. 

Few studies have been carried out in solving this 
problem although there are many software reliability 
models proposed for assessing the reliability of a 
single system, see e.g. Xie [13] in which most of the 
existing models are summarized. In this paper we 
study an additive model for assessing the reliability of 
this type of integrated system. We assume that each 
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individual subsystem is thoroughly tested and the aim 
is to assess the system reliability. Here a subsystem 
can be a module, a unit or a part of the system. 
However, it should be of a reasonable size and there are 
failure data at this level available. 

Unlike some previous papers, such as Littlewood 
[8], Kubat [6], Laprie and K.anoun [7] and Dugan and 
Lyu [2], which assume that the subsystem reliabilities 
are known, subsystem reliabilities are estimated using 
subsystem failure data. Some possible problems 
associated with the proposed methods are also 
discussed. A simple numerical example is presented to 
illustrate the idea. 

2 An additive model 

We assume in this paper that the software system 
is composed of a number o f  subsystems, which may 
have been developed in parallel. They might be 
functioning or tested independently. This is a common 
approach in practice, especially for large software 
systems. 

It should be pointed out here that in case of 
integration testing, failure times are still independent 
in random testing situation and failures can still be 
classified according to from which subsysteim the 
original fault comes from. Hence, this assumption can 
easily be met as this type of information can be made 
available in practice. 

As we consider any sutisystem failure as a system 
failure, we can use a simple additive model. From a 
reliability point of view, the system can be considered 
as a series system with a number of subsystems 
without considering their functional structure. Note 
that a fault-tolerant system can also be considered as a 
series system from a reliability point view d any 
subsystem failure is treated as a system problem, 
although from a functionality point of vievv, the 
system is a parallel one. 

We assume that the system failure intensity, 
& ( f ) ,  is the sum of subsystem failure intensities, 
hj(t), i = l , 2 ,  ..A. The relationship between A,(t) and 
&(t) is given by 

The expected cumulative number of system 
failures at time t ,  ,u$(t), is given by 

i= 1 i = l  10 

The mean value function is commonly used in 
software reliability studies as it directly measures the 
expected number of failures as a function of time 
although it is the intensity function that is of greater 
interest in reliability engineering. As given in (l), 
their relationship is however very simple. The failure 
intensity function is also the derivative of the mean 
value function. From (3), we see that the system level 
mean value function is also an additive function of 
subsystem level mean value functions. 

Note that for the sake of coivenience, we have 
assumed that r is set to zero at thie same time for all 
subsystems. When subsystems are introduced at 
different time points, this assumption is not valid. 
Relaxation of this assumption will be discussed later 
on. The different starting points for different subsystem 
is also the situation for the numerical example 
presented in Section 5. 

A comparison with some other approaches can be 
made here. First, as it is probably a common practice, 
we should start collecting new datal if we know that the 
system is subjected to major change. For example, a 
new subsystem might have been added. In this case, we 
are not making use of complete knowledge, and it may 
take a long time to gather enough data for new 
estimation. 

Another possibility is that we could just ignore 
the information that there are a number of subsystems 
and use the system level data. A single model can then 
be used in fitting the data and reliability can be 
predicted using this model. However, there is no 
existing model that can model the sudden change of the 
failure intensity, which is possible due to the new 
subsystem. 

In case the subsystem level reliability growth 
rates differ considerably, it is pointed out in Xie and 
Goh [14] that inaccurate prediction will be made if a 
single model commonly used i!i applied. The two 
alternatives discussed previously all suffer from this 
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problem in case of different reliability growth rates for 
subsystems. 

On the other hand, it is also a waste of 
information if the available knowledge is not made use 
of. In this case, the time of the introduction of new 
subsystem, and the knowledge of where the original 
fault is from are important pieces of information which 
are easily obtained. Hence, the additive model is more 
preferable and it is the focus in this paper. 

3 The use of existing models 

The simple additive model proposed here can be 
seen as a superposition of nonhomogeneous Poisson 
process (NHPP) models. NHPP models are commonly 
used in software reliability studies, see e.g., Yamada 
and Osaki [ 161, Goel [3] and Xie [ 131. It can be noted 
that the mean value function and the failure intensity 
hnction are uniquely determined when any one of them 
is known. It is well-known that if we have a number 
of subsystem failure processes and all can be modelled 
by a NHPP, then the system failure process defined as 
the sum of all failure processes can also be described as 
a NHPP with the mean value function as the sum of 
the underlying mean value hnctions. 

For the interpretation of results, we assume that 
the underlying subsystem failure processes can be 
described by NHPP with mean value function pi (& 
i=1,2, .A. Hence the additive model is also a NHPP 
model, with mean value function given in (3) and the 
corresponding failure intensity function is given in (2). 
Note that this is different than the weighted model 
presented in Lyu and Nikora [9]. All properties of 
NHPP are then valid for our additive model and the 
system failure process that is described by the additive 
model. 

The additive model is a generic model. Any 
existing software reliability model can be used as the 
underlying software reliability growth model for each 
subsystem. In Xie and Goh [14], some examples on 
hardware reliability assessment are presented using the 
Duane reliability growth model as the underlying 
subsystem reliability growth model. The Duane model, 
although widely referred to, is not suitable for software 
failure data. 

A number of studies have been carried out to 
select a suitable model, see e.g. Keiller and Miller [5] 
and Lyu and Nikora [9]. Although this is not the topic 
of this paper, the models have to be selected based on 
simplicity, accuracy and the underlying assumptions 
associated with each model. This is a difficult issue and 

can only be tested when data are available. However, 
when past data can be obtained, the accuracy of the 
model used for similar products gives a good guideline 
for model selection. 

Although the application of the additive model is 
straightforward and any existing software reliability 
growth model can be used as the underlying reliability 
growth model, there are some potential problems. 
Some of them are easy to solve, while others are more 
difficult to deal with. We have to note that the overall 
model cannot be expected to perform better than the 
worst of the underlying models. This implies that 
different models can be used for different subsystem in 
the system. Hence, the selection of underlying models 
is still very important, although we will not elaborate 
it further. 

The most immediate problem when the additive 
model is used in software reliability analysis is that the 
starting time may not be the same for all subsystems. 
It is common that some modules or subsystems may 
be developed in order to complement earlier parts of the 
system with separate and additional functions, as it 
may be demanded by new customers. If this is the case, 
existing models have to be modified to indicate the 
difference between the time when testing started or the 
time has to be adjusted. 

As the problem involves a number of models, the 
complexity increases. Hence, it is advisable to use 
simple models or to rely on software tools for 
reliability assessment. To simplify interpretation of 
the results, it is also better to use similar models for 
subsystem failures. Since subsystems within the same 
company, are usually developed and tested in a similar 
manner, the use of similar models is justified. In this 
paper, the graphical approach is emphasized, although 
there are other software reliability assessment packages 
that can be used. 

Models similar to the additive model have been 
used indirectly in reliability growth studies although 
no formal description is available, see, e.g., Hansen 
and Thyregod [4] and Ray et al. [12]. Yamada et al. 
[ 171 have earlier studied a related model called two-type 
of error model related to software reliability growth 
analysis. However, in this paper we present a study for 
solving some practical problems when the additive 
model is interpreted and applied directly. 

4 A graphical approach 

To solve the problem of increased complexity due 
to the use of the additive model, we should use simple 
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graphical models, such as the Duane model, the log- 
power model or other models for which siimple 
graphical estimation procedures exist, see Xie and Zhao 
[ 151. Models with graphical interpretations have been 
called First-Model-Validation-Then-Parameter- 
Estimation models since they can be validated before 
the parameters are estimated. In practice, the parameter 
estimation and model validation, which is usually done 
by checking the fit after the parameters are estimated, 
are difficult tasks for other models. 

The Duane model origiinally proposed in Duane 
[l] has shown to be very useful in system reliability 
growth studies, although its application to software 
testing is not encouraging. However, most of the 
existing software reliability irnodels do not possess the 
graphical property similar to that of the Duane model, 
and estimation has to be carried out using numerical 
procedures, and not to mcntioned that the model 
validation is another more di t'ficult issue. 

Some modifications retaining the graphical 
property of the Duane model are presented in Xie and 
Zhao [15]. One of the modds which is promising is 
the log-power model, and thils model will be employed 
here. 

The log-power model with parameters a and b has 
the mean value hnction given as 

It can be noted that a linear relationship can be 
obtained by taking the logarithm on both sides and we 
have 

Inp(t) = Inu + blnln( l+t), t20. (5) 

Hence, by plotting the empirical cumullative 
number of failures versus tiime using log-double-log 
scaled axis, the plot should approximately be on a 
straight line with a slope equal to b .  This is provided 
that the log-power model is valid, and otherwise, the 
model should be rejected without a need for further 
investigation. Little time is wasted in the case of not 
accepting the model. 

5 A numerical example 

In this section we pres1t:nt a study using a iset of 
data from a large communication software project to 
illustrate the use of the additive model. It simply 
consists of two subsystems, which are tested 

independently. The failure data for each subsystem and 
that €or the system is given in Tablle 1 with the plot of 
empirical system failures displayed in Figure 1. 

Month 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13  
14 
15 
16 
17 
18 
19 
2 0  
21 
2 2  
23  
2 4  
25  
26  
27  
28 
29  
30  
31 
32  
33 
34 
35 
36 
37 
38 
39 
4 0  
41 
4 2  
4 3  
4 4  
45  
4 6  
4 7  
4 8  
4 9  
5 0  

Sub- 
system 1 

2 
1 1  
18 
10 
12 
4 
28  
6 
7 
6 
17 
31 
8 
7 
10 
2 
2 
0 
3 
2 
1 
1 
1 
0 
1 
1 
0 
0 
0 
1 
0 
0 
0 
0 
1 
0 
1 
0 
0 
0 
0 
0 
1 
I 
0 
0 
1 
0 
0 
1 

Sub- 
system 2 

NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 

3 
3 

38 
19 
12 
13 
26  
3 2  
8 
8 

1 1  
14 
7 
7 
7 
0 
2 
3 
2 
5 
2 
3 
4 
1 
2 
1 
0 
1 

System 
2 
1 1  
18 
10 
12  
4 
28  
6 
7 
6 
17 
31 
8 
7 
10 
2 
2 
0 
3 
2 
1 
1 
4 
3 

39 
20 
12 
1 3  
26  
3 3  
8 
8 
1 1  
14 
8 
7 
8 
0 
2 
3 
2 
5 
3 
4 
4 
1 
3 
1 
0 
2 

Table 1. A set of system failure data 
with information at subsystem level. 
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It is clear from the plot of system failures that no 
single model in the existing literature can fit the data 
very well because of the obvious change in the failure 
intensity around ~ 2 6 .  There is no model that can 
incorporate this sudden change of system failure 
behavior. Note that t=26 is the time when a large 
number of failures occurs in Subsystem 2, but it is not 
the same as the time for the introduction of the second 
subsystem. 

Such a change is common and it is usually 
caused by the introduction of a new subsystem into the 
system. If the whole system is regarded as new, then a 
large amount of additional testing has to be done to 
make use of the model again. The early part of the 
information is usually not made use of and it is a 
waste of information which can be costly. 

400, 

v) 

2 300, 

Month 

Figure 1. The 
data for 

plot of empirical failure 
the whole system. 

From the subsystem failure data, we can actually 
make use of all information by analyzing each 
subsystem separately. Note that even in the case when 
subsystem failure information is not presented, it may 
be worthwhile to classify the system failures into 
subsystem failures. The plot for the two subsystems 
based on log-power models are displayed in Figure 2 
and 3, respectively. 

The regression is done in a standard way using 
any spreadsheet software. . From the regression 

equation, the estimates can read according to (5 )  and an 
estimated mean value hnction can be obtained. 

The estimated mean value function for 
Subsystem 1 failures is 

and the corresponding mean value function for 
Subsystem 2 is 

Based on this information and by noting that the 
second subsystem is incorporated at ~ 2 3 ,  we estimate 
the overall system failure intensity as 

and it is this equation that should be used for the 
prediction of future behavior. 

Some remarks are in order here. As we have 
highlighted an approach to estimate system failures 
based on subsystem failure data and the emphasis is on 
the simplicity of the approach, we are not stating that 
the log-power model is the best model for this set of 
data. In fact, from the raw data, we can see that there is 
a sudden drop of the failure intensity for the first 
subsystem at around t=l6. This can be caused either by 
relocating the testing effort or a change of testing 
strategy. Execution time, which is probably better in 
this case, could be tried if it was available. 

For both data sets, it seems that the failure 
intensity is increasing at the beginning as the number 
of failures in the first two intervals are significantly 
smaller than the third. This phenomenon is usually 
caused by the learning effect as the testers may not be 
familiar with the system. 

For this type of data, we would suggest the use 
of the s-shaped model as this type of model is suitable 
in dealing with the increasing failure intensity at the 
beginning, see e.g., Ohba [ l  11 and Yamada and Osaki 
[16]. Despite these minor problems, the approach of 
using subsystem information in system reliability 
estimation is still the same with the use of additive 
models and we would suggest them to be incorporated 
in this type of analysis. 
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y 2 .56~  41, 2.344 
6 Discussion 

5 

1 ,  
B 

-.4 -.2 0 .2 .41 .6 .8 1 1.2 1.4 

lnln Mbnth 

Figure 2. The lolg-power model 
applied to Subsystem 1 failure data. 

y = 1.8%~ + 3.314 

.4 .6 .8 1 11 .2 

lnln Month 

Figure 3. The log-power model 
appligd to Subsystem 2 failure data. 

In this paper we have presented a study using a 
simple additive model in studying software reliability 
when the system is modular and developed and tested 
independently. The approach, although very simple, is 
practical for more accurate decision-making. It 
incorporates some easily available !system development 
information in reliability estimation and it provides a 
better statistical description of system failures. 

There are some potential problems with this 
approach, and some of them are also areas for further 
study. First, we assume that the subsystems are 
developed independently without knowledge of each 
other. This may not be true in practice, although it is 
likely that some knowledge woulid have been gained 
when the first subsystem is developed, so that the 
subsequent subsystems can be better initially. 
However, without additional information, our model is 
a step forward in making reliability prediction by 
making use of some easily available historical 
information of system development. 

In our example, the second subsystem seems to 
be worse, as it can be seen from Table 1 that there are 
more failures with the second subsystem. One 
possibility is that it is likely that the second 
subsystem is developed in a hurry 1.0 meet the deadline. 
This will certainly affect the overall reliability. Hence 
it is inconclusive and further studies have to be 
presented. 

Second, we assume that then: is no problem with 
the interface of two subsystems. In integration testing, 
this is usually not the case. Howwer, the results and 
conclusions are still valid if the interface errors are 
excluded, as for that particular type of faults, the 
testing data can and should be gathered and analyzed 
separately if they are many in number. 
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