

P. Runeson and C. Wohlin, "Statistical Usage Testing for Software Reliability
Control", Informatica, Vol. 19, No. 2, pp. 195-207, 1995.

1 (18)

Statistical Usage Testing for
Software Reliability Control

Per Runeson and Claes Wohlin

Abstract

Software reliability is a frequently used term, but very seldom the reliability is under con-
trol during a software development project. This paper presents a method, Statistical
Usage Testing (SUT), which gives the possibility to estimate and predict, and hence con-
trol software reliability. SUT is the reliability certification method described as a part of
Cleanroom software engineering. The main objective of SUT is to certify the software
reliability and to find the faults with high influence on reliability. SUT provides statisti-
cally based stopping rules during test as well as an effective use of test resources, which is
shown by practical application of this and similar methods. This paper presents the basic
ideas behind SUT and briefly discusses the theoretical basis as well as the application of
the method.

Key Words: Statistical Usage Testing, Software Reliability, Usage Profile, Operational
Profile, Statistical Quality Control.

1. Introduction

The software development community is not in control of the software reliability. This
can be stated based on a quote from Tom DeMarco, [DeMarco82]: “You can’t control
what you can’t measure”. It is not possible based on traditional development techniques to
actually measure the software reliability hence the reliability is out of control.

Software reliability engineering is currently a fast growing area. Therefore the situation is
not hopeless; the techniques are becoming available to control the reliability. The soft-

Q-Labs
IDEON Research Park

S-223 70 LUND
SWEDEN

Phone: +46-46 18 29 97
Fax: +46-46 15 28 80
e-mail: pr@q-labs.se

Department of Communication
Systems, Lund University
Box 118, S-221 00 LUND

SWEDEN
Phone: +46-46 10 33 29
Fax: +46-46 14 58 23

e-mail: claesw@tts.lth.se

2 (18)

ware process will become more and more controlled which means that methods to esti-
mate, predict and certify the fault content and reliability will be introduced. This is the
only way towards managing the process of actually engineering reliable software, instead
of crafting unreliable software.

The testing techniques normally applied are aimed at finding faults. This is a devastating
point of view since it implicitly accepts that errors are made and that the testers have to
remove them. This reasoning may be philosophical, but it is believed to be one of the key
issues in controlling software reliability. One of the most important aspects in the devel-
opment is the motivation and belief in being able to do something, in this case develop
software with few or no defects. Therefore it is essential to provide techniques so that the
software developers can believe in developing zero-defect software, which also includes
methods to certify the actual reliability level.

Cleanroom Software Engineering [Mills87, Cobb90, Dyer92, Linger94] emphasizes the
intellectual control in software development. Cleanroom is a collection of several sound
management and engineering techniques, in particular it is emphasized that it is possible
to develop nearly zero-defect software. One of the engineering techniques emphasized in
Cleanroom is Statistical Usage Testing, which is a method for statistical control of the
software reliability during the system or acceptance testing phase. The objective of this
paper is to propose a method for Statistical Usage Testing and to illustrate its use.

The requirement on the testing phase, when applying usage testing, is that it resembles the
operational phase to be able to apply the techniques to actually remove failures most crit-
ical for the user and certify a particular reliability level. It may be difficult to forecast the
exact usage, but it is important to try to understand how the software probably will be
used. It is often, at least, possible to identify usage classes, and the exact probabilities are
not that critical. One possibility is to certify the software for one or several scenarios,
which then can be used in negotiations between developers and procurers.

Statistical Usage Testing and its opportunities to promote statistical control of the soft-
ware reliability are discussed in this paper. The usage testing technique provides a basis to
certify a reliability requirement, see section 2. The principles behind Statistical Usage
Testing are discussed in section 3, while the techniques within usage testing are further
described in section 4, i.e. usage specification and reliability certification. In section 5 a
minor example is presented to illustrate the usage testing technique described. Section 6
presents some practical experiences with usage testing techniques. Finally in section 7
some conclusions are presented.

2. Reliability requirement

2.1 Requirements specification

The requirements specification contains normally both functional requirements and qual-
ity requirements; in particular reliability or availability requirements are put into the spec-
ification. The fulfilment of the functional requirements is evaluated through using the
functions specified in the requirements, but the other requirements ought to be fulfilled as
well. The methods for reliability certification have, however, not been available or the
available techniques have not been applied. This must change, either it is no use formulat-

3 (18)

ing reliability requirements or methods to evaluate and certify the reliability must be
applied.

Statistical Usage Testing is a method to actually certify the reliability requirement. This
type of method must be applied, since it is not possible to keep applying traditional sys-
tematic testing techniques and then see the system fail in operation. This is a result of not
certifying the reliability requirement. The society can not afford software system failures,
neither in safety critical systems nor in other cost intensive systems. For some systems,
certification of the required level is not possible, in these cases certification must be com-
bined with correctness proofs of the software. Usage testing is thus not the solution to
obtain high quality software, but it enables certification of a reliability level.

The reliability requirement aims at the reliability as perceived by the users when the soft-
ware system goes into operation. Therefore usage testing must be applied, since reliability
is not only the number of faults but also the actual location of them compared with usage
of the software system.

The method being presented allows for certification of the reliability requirement, which
means that we will be in control of the reliability before releasing the software product
instead of being surprised as the system fails in operation. In particular, it provides an
opportunity to formulate a stopping criterion for the testing, where the criterion is based
on the fulfilment of the requirement.

2.2 Validity of certification

Usage testing as a means for reliability demonstrations is well-known and its superiority
compared to coverage testing is discussed in [Musa87, Cobb90, Adams84]. An argument
often raised concerning usage testing is: it is not possible to determine the usage profile,
therefore usage testing is not applicable. This is, however, not completely true. It will
probably be difficult to determine the usage profile exactly, but it ought still to be possible
to determine usage probabilities relative to each other. It is often well known which func-
tions will be used most frequently in a software system. Thus by making a clever guess or
an estimate of the probabilities this method will still achieve preferential results over cov-
erage testing. Successful applications of a usage profile based approach have been pre-
sented in [Juhlin92, Abramson92].

A simple example will show the gain in applying usage testing, even when the usage pro-
file, estimated during testing, is not the profile observed as the system is put into opera-
tion.

Let us assume that we have a system consisting of three modules as illustrated in figure 1.

FIGURE 1. System architecture

For simplicity it is assumed that the MTBF values for the three modules are all equal to
100 when the system testing begins. All times are given in some undefined time unit. The

System

Module 1 Module 2 Module 3

4 (18)

system test can be performed either as a coverage test or a usage test. In coverage testing
the modules are tested equally, see table 1, and the MTBF values for each module
improve identically, e.g. to 1000, see table 2.

It is necessary to use a particular usage profile to be able to perform a usage test. The pro-
file is identified from experience and knowledge of the probable usage of the system
being developed. Test cases are generated according to this usage profile, see table 1.
Usage testing gives different MTBF values for the modules. In [Adams84, Cobb90] it is
shown in their particular case that based on a study of a number of projects that usage test-
ing improved the perceived reliability during operation 21 times greater than that using
coverage testing. Thus the MTBF for an arbitrary use in this example is assumed to be 21
000 (see table 3), i.e. 21 * 1000, where 1000 is the MTBF for an arbitrary use based on
coverage testing. The MTBF values for the different modules are obtained based on the
MTBF for an arbitrary use, and by assuming that the raise in MTBF is proportional to the
probability of using a specific module. This reasoning leads to the figures presented in
table 2.

The actual values are not particular interesting, but emphasis must be placed on the result
after the system is put into operation and the increase obtained in perceived reliability
using usage testing.

An actual usage profile is obtained as the software is put into operation. The usage profile
actually being experienced during operation may differ from the one applied during usage
testing. Two examples are shown in table 1. The first example (Actual operation 1) shows
a minor change or error in the usage profile, whilst the second profile (Actual operation 2)
is an example of a rather large difference between the profile used during testing and the
profile in actual operation.

The actual usage gives the perceived MTBF. The two testing techniques give different
MTBF values in the two operation cases, see table 3. The values in table 3 are calculated
by weighting the MTBF values for the three modules. The case “after usage testing (major

Table 1: Probabilities for using the three different modules

Module 1 Module 2 Module 3

Coverage testing 1/3 1/3 1/3

Usage testing 0.001 0.01 0.989

Actual operation 1 0.002 0.05 0.948

Actual operation 2 0.10 0.15 0.75

Table 2: MTBF values per module

Module 1 Module 2 Module 3

Before test 100 100 100

After coverage test 1 000 1 000 1 000

After usage test 121 314 21 230

5 (18)

difference)” is used to illustrate the calculations: MTBF = 0.1 * 121 + 0.15 * 314 + 0.75 *
21 230 = 15 982.

The MTBF estimates from testing are shown in the upper part of table 3. In the lower part
of the table the perceived MTBF values during operation are shown.

It can be concluded that usage testing gives an improved MTBF during operation. Usage
testing is of course dependent on the accuracy of the usage profile. Even if the profile is
erroneous, the perceived MTBF is an improvement on that obtained with coverage test-
ing, provided the probabilities for usage are in the correct order. In this particular example
the probability of usage of the modules (from highest to lowest) are ranked 3, 2 and
finally module 1. The MTBF is, however, overestimated during usage testing if the profile
is erroneous, but still the result is better than that of applying coverage testing.

The overall conclusion is that usage testing improves the probability (as opposed to cov-
erage testing) of locating faults that influence the reliability during operation. This con-
clusion is also supported by other sources including [Adams84, Cobb90]. The example
has also shown that even if the usage profile is erroneous during testing, the MTBF during
operation will be higher than that obtained with coverage testing or other black box test-
ing approaches.

3. Statistical Usage Testing

3.1 Cleanroom

Statistical Usage Testing (SUT) is the certification part of Cleanroom Software Engineer-
ing. Cleanroom is a methodology which consists of a set of software engineering and
management principles as well as practices according to which software can be developed
with very high quality and productivity [Mills87, Mills88, Cobb90, Linger94, Cosmo93].
The methodology has proven to be very successful when applied in software development
companies in Europe as well as in the USA [Selby87, NASA90, Tann93].

Cleanroom aims at development of almost zero-defect software with measurable reliabil-
ity. The basic idea is to do things right from the beginning instead of first introducing and
then correcting errors. Management and engineering techniques in Cleanroom are:

Table 3: MTBF estimates from test and operation environments

ESTIMATION FROM TEST MTBF

Coverage test 1 000

Usage test 21 000

PERCEIVED IN OPERATION

After coverage test (independent of actual usage profile) 1 000

After usage test (minor change) 20 142

After usage test (major difference) 15 982

6 (18)

• The software is developed by small teams (3–5 people) with clearly defined
responsibilities. There are three types of teams, specification, development and
certification teams. The teams are jointly responsible for the produced result.

• Very much emphasis is put on rigorous specifications which are the basis for the
development.

• The development is done in increments, each of which is executable. By parti-
tioning the software into increments each increment may be handled by different
teams and developed in parallel. Furthermore the increments are small enough to
be held under intellectual control.

• The software is developed in small steps from specification to design according
to a step by step algorithm. Each step is a refinement of the prior one. For each
step more details are added and finally it ends up in executable code.

• Each of the development steps is rigorously verified towards the previous steps.
The verification is mainly performed by reviews, supported by a theoretically
based method called “functional verification”.

• Traditional testing is replaced by certification of the software reliability by Sta-
tistical Usage Testing.

Most of the techniques are well-known but the combination of these and the management
attitudes have given encouraging results concerning software quality as well as productiv-
ity and development time control. In this paper we concentrate on the certification part of
Cleanroom, Statistical Usage Testing.

3.2 Usage based testing

Traditional testing is often concerned with the technical details in the implementation, for
example branch coverage, path coverage and boundary-value testing, [Myers79]. SUT on
the contrary takes the view of the end user. The focus is not to test how the software is
implemented, but how it fulfils its intended purpose from the users’ perspective. SUT is
hence a black box testing technique taking the actual operational behaviour into account.
It treats the software as being a black box and is only concerned with the interfaces to the
users.

SUT has two main objectives:

• To find the faults which have most influence on the reliability from the users’
perspective.

• To produce data which makes it possible to certify and predict the software relia-
bility and thus to know when to stop testing and to accept the product.

The latter implies that a usage profile is needed as it is not possible to certify and predict
reliability in operation from other black box testing techniques.

3.3 Cost effectiveness

Studies show that usage based testing is an efficient way to find the faults which have
most impact on the reliability [Adams84]. The referenced study shows a gain with a factor

7 (18)

20. From seven software development projects at IBM it is concluded that 1.6% percent
of the faults caused 58% percent of the failures during operation, while 61% percent of
the faults caused only 2.8% percent of the failures. Thus it is more efficient to remove the
1.6% of the faults.

Software reliability depends not only on the number of faults in the software, but also on
how the software is used. A fault in a part of the software which is frequently used has
larger impact on the reliability than a fault in a less frequently executed part.

As the study by Adams shows, the most efficient way to improve software reliability is to
remove the faults causing most of the failures, and not those which occur very seldom. In
SUT test cases are selected to test according to the operational usage and are hence effec-
tive in order to find the faults which affect software reliability.

3.4 Software reliability certification

The other objective of SUT is reliability certification, i.e. getting a reliability measure cor-
responding to the intended operational usage. To certify the software reliability, there is a
need for a reliability model, which based on failure data from testing can estimate and
predict the software reliability.

Most reliability growth models which can be used for reliability certification and predic-
tion have a common prerequisite: usage based testing [Goel79, Jeliniski72, Musa87]. This
prerequisite has been overlooked during the years, but has come into focus during the last
years [Musa93, Runeson92].

3.5 Software acceptance

The software reliability measure obtained in usage based testing can be used as a criterion
for software acceptance as well as a stopping rule for the testing.

The contract between a supplier and a purchaser often includes a software reliability
requirement to be fulfilled at delivery. Neither the supplier nor the purchaser however can
prove that the requirement is fulfilled or not. SUT is a possibility for both parts to get
objective measures which may be used for judgement about the requirement fulfilment.

From the supplier’s side a question of interest is when to stop testing. Large parts of a
software development project costs are spent on testing. There is a need for saving testing
costs. However it can cost money for a supplier to deliver bad products as well in terms of
damages or bad reputation. This emphasizes a need for controlling software reliability by
using reliability measures as stopping criteria for software testing, which are provided by
SUT.

4. SUT models and methods

When applying SUT two kinds of models are needed, a model to specify the usage and a
reliability model. In section 4.1 the usage specification is presented while the reliability

8 (18)

models are treated in section 4.2. A method describing how to use the models during Sta-
tistical Usage Testing is presented in section 4.3.

4.1 Usage specification

The usage specification is a model which describes how the software is intended to be
used during operation. Different types of models have been presented in the literature:

• Tree-structure models, which assign probabilities to sequences of events
[Musa93].

• Markov based models, which can specify more complex usage and model single
events [Whittaker93, Runeson92].

The primary purpose of a usage specification is to describe the usage to get a basis for
how to select test cases for the usage based testing. It can however be used for analysis of
the intended software usage as well, to plan the software development. Frequently used
parts can be developed in earlier increments and thus be certified with higher confidence.
Development and certification of increments are further discussed in [Wohlin94a].

In this paper the State Hierarchy (SHY) usage specification is briefly presented
[Runeson92]. It consists of a usage model, which is the structural part, and a usage pro-
file, which is the statistical part.

4.1.1 Usage model

The SHY usage model is a hierarchical Markov chain which copes with specification of
the usage of large multi-user software systems. The basic concept of the SHY model is
shown in figure 2. Examples below are taken from the telecommunications field.

Figure 2. SHY model

The usage is specified as a hierarchy. The state on the top represents all the usage. The
users can be divided into different user types or categories, for example for a small busi-

Usage

User
type

User
type

User User User

Service Service Service Service

Usage level

User type level

User level

Service level

Behaviour level

9 (18)

ness exchange, secretaries, other employees and modem connections. Note that this
example shows that a user must not be human.

For each of the user types, a number of individuals are specified on the user level, for
example one secretary, four other employees and one modem connection.

Each user individual can use a number of services, which are specified on the service
level, for example “basic call” and “call forward”.

The usage of the services is then specified as plain Markov chains on the behaviour level.

The SHY model can be applied with different levels of detail depending on the applica-
tion. The behaviour level can for example be excluded if less details are to be specified in
the usage model.

4.1.2 Usage profile

The usage profile adds the probabilities for selection of the branches to the usage model.
Probabilities are assigned to the transitions in the behaviour level Markov chains as well.

The probabilities are assigned based on measurement on usage of earlier releases or on
expert knowledge. The SHY model makes it possible to analyse parts of the usage and
assign probabilities for only that part of the model at a time, for example a user type.

The assignment does not have to be in absolute figures. Classes of usage frequency can be
used, for example very frequently, frequently and seldom used. These classes can be
assigned relative probabilities which may be an easier task than to assign every single
probability.

4.2 Reliability model

To analyse the failure data collected during the statistical testing a reliability model is
needed. Several models have been published over the last 20 years, see [Goel85] for an
overview. Models of different complexity and possibility to estimate the software reliabil-
ity have been presented.

One very simple model which is suitable for software certification is the hypothesis test-
ing control chart model [Musa87]. It is based on a traditional quality control technique:
sequential sampling [Grant88].

10 (18)

The model is based on a control chart with three regions, reject, continue and accept, see
figure 3. The control chart is constructed based on the required level of confidence in the
estimation.

Figure 3. Hypothesis testing control chart

The failure data are plotted in the chart, failure number towards weighted time between
failures1. As long as the plots fall in the continue region, the testing has to continue. If the
plots fall in the rejection region, the software reliability is so bad that the software has to
be rejected and re-engineered. If the plots fall in the acceptance region, the software can
be accepted based on the required MTBF with given confidence and the testing can be
stopped.

Thus the hypothesis certification model provides a means for certifying the software and
giving a reliability measure for the software as well as a means for controlling the testing
effort.

4.3 SUT method outline

The models presented above can be applied according to the following method:

During specification:

1. Produce the usage model.

2. Assign the usage profile.

During test:

3. Select test cases from the usage specification.

4. Run the test cases and collect failure data.

5. Certify the software.

During step 5 a decision is made based on the certification model outcome. If the failure
data plots fall in the continue region, the method is repeated from 3 to 5 again. If the soft-
ware is rejected, it is put back for redesign and finally if the failure data fall in the accept-
ance region, the certification is stopped and the software is accepted.

1. Weighted time between failures means the measured time divided by the MTBF requirement.

Reject

Continue

Accept

failures

MTBFw

11 (18)

5. Example

This section contains an example which purpose is to make the models and methods pre-
sented in section 4 easier to understand and to apply. The method followed is the one pre-
sented in section 4.3. The subsections below are numbered according to the method
outline. The focus is on usage modelling, see section 5.1, while section 5.2 to section 5.5
are more briefly described since the techniques for usage specification are less known
than the other techniques.

The example on which the test method is applied is a private branch exchange (PBX) for
a small office, see figure 4. Five human users are connected to the PBX, one secretary and
four other employees. Furthermore there is one modem line. The connection with the
outer world is through two lines. More details about the example specifications are given
throughout the example.

Figure 4. The example PBX system structure

5.1 Produce the usage model

The SHY usage model, see figure 2, is produced in a number of steps, each of which is
small and rather easy to perform. The steps are:

1. Identify the services available for the users.

2. Identify the user types and determine which services are available for each type.

3. Determine the number of individuals for each type.

4. Specify the behaviour Markov chain for each service.

5. Instantiate the services for the users.

In the example the first three steps are fully shown, while the last is only partially per-
formed in this paper.

The usage model is produced starting with identification of the services available. The
services are internal and external basic call, internal call forward, internal call transfer and
call from the network.

The different types of users are identified. In this example there are four: Secretary,
employee, modem and in/out line. The employees have internal and external basic call
and internal call forward. The secretary has furthermore internal call transfer. The modem
line has only external basic call. The in/out lines can only handle calls.

PBX

12 (18)

The different individuals of the user types are identified. There is one secretary, four
employees, one modem and two in/out lines in the example.

In table 4 the first three steps in preparing the usage model for the PBX are summarised.

The behaviour level Markov chains for the services are then specified, see figure 5 and
figure 6. For the internal basic call the stimuli are selected to be: Off Hook (OfH) (lift the
receiver), Dial Internal Number (DIN), On Hook (OnH). There is also an asterisk (*)
stimulus which means that the transition is forced by another behaviour level Markov
chain. The state with thicker line is the start state. Note that the IBC service referenced in
the link table is another instantiation of the service (another user).

Figure 5. Behaviour Markov chain for internal basic call (IBC)

The behaviour level Markov chain for the internal call transfer service is described in
figure 6. The stimuli are: Activate Call Transfer (ACT), Dial Internal Number (DIN) and

Table 4: PBX usage

User type Instances Services

Secretary 1 Internal basic call (IBC)
External basic call (EBC)
Internal call transfer (ICT)

Employee 4 Internal basic call (IBC)
External basic call (EBC)
Internal call forward (ICF)

Modem 1 External basic call (EBC)

In/Out-line 2 Call (C)

Idle
Dial-
tone

Ring-
tone

Error-
tone

Busy-
tone

Talk

OfH
OnH

OnH
OnHOnH

OnH

DIN DIN
DIN

Ring

OfH

*1

*2

*3

Table 5: Link table

Link Forced by
1 IBC: Dialtone–DIN
2 IBC: Ringtone–OnH
3 IBC, ICT: Ring–OfH

13 (18)

Transfer The Call (TTC). The linked transitions are forced by an instance of the Internal
Basic Call (IBC) service.

Figure 6. Behaviour Markov chain for internal call transfer (ICT)

In this manner all the services are specified; in this example however only these two are
specified. Finally the state hierarchy model is compounded by its parts. The usage model
for the example as a whole is presented in figure 7.

Figure 7. Usage model for the PBX example

5.2 Assign the usage profile

When the usage model is produced the probabilities for the arcs have to be assigned, i.e.
the usage profile is assigned.

The assignment starts on the user level which corresponds to what is well-known, at least
in terms of relations between the usage. In the example it is assumed that one out of five
of the events origin from each of the in/out-lines. Among the other users it is assumed that
an event from the secretary is three times as probable as events from three of the employ-
ees and equally probable as events from the fourth employee. Modem line events are
equally probable as events from one of the three least probable employees. These assump-
tions must come from market surveys, knowledge of existing and similar systems and
expert opinions.

Idle
Dial-
tone

Ring-
tone

Error-
tone

Busy-
tone

Talk

ACT
TTC

ACTACT
ACT

DIN DIN
DIN

*1
*2

*3

BlockACT Table 6: Link table

Link Forced by
1 IBC: Idle–OfH
2 IBC: OnH
3 IBC: Ring–OfH

IdleDial-tone

Ring-tone
Error-tone Busy-tone

Talk

ACT
TTC

ACTACTACT
DINDIN

DIN

*1
*2

*3

BlockACT

Usage

Secr. Empl. Mod. In/
Out

Sec1 Emp1 Emp2 Emp3 Emp4 Mod1 I/O1 I/O2

EBC IBC ICT EBC IBC ICT EBC C C

IdleDial-tone

Ring-tone
Error-tone Busy-tone

Talk

ACT TTC
ACTACTACT

DINDIN
DIN

*1
*2

*3

BlockACT

…etc.

…etc.

14 (18)

Based on this information, it is possible to derive probabilities for the usage model hence
providing a basis for generating test cases which resemble the anticipated behaviour in
operation. An equation can be set up which gives the absolute probabilities for the users
(Pa):

Pa(In/out1) = Pa(In/out2) = 0.2;
Pa(Secr) = 0.18;
Pa(Emp1) = Pa(Emp2) = Pa(Emp3) = 0.06; Pa(Emp4) = 0.18;
Pa(Modem) = 0.06.

To apply these figures on the SHY usage model, they have to be divided on the user types
and the user individuals. The user level probabilities (Pul) are given by the relations
between the individuals. Since the sum of the probabilities equals one, the calculations for
the employees are:

Pul(Emp1) = Pul(Emp2) = Pul(Emp3) = 0.06/(0.06+0.06+0.06+0.18) = 0.166;
Pul(Emp4) = 0.18/(0.06+0.06+0.06+0.18) = 0.5;

The sum of the absolute probabilities of a user type gives the user type level probabilities
(Putl):

Putl(Emp) = 0.06+0.06+0.06+0.18 = 0.36;

When all of the calculations are performed the usage profile applied on the SHY model is
according to figure 8:

Figure 8. Usage profile for the upper levels of the example

The transitions in the behaviour Markov chains are assigned probabilities as well, except
for the transitions forced by other services. This gives a complete usage specification
from which test cases can be generated.

5.3 Select test cases

The test cases are selected from the usage specification by running through it beginning
from the usage state and down to a single event. The actual path through the model is con-

Usage

Secr. Empl. Mod. In/
Out

Sec1 Emp1 Emp2 Emp3 Emp4 Mod1 I/O1 I/O2

0.18
0.36 0.06

0.4

1.0 0.166 0.166 0.166 0.5 0.5 0.51.0

User type level

User level

15 (18)

trolled by a random number sequence. For each event in a test case the specification is run
through once. The beginning of an example test case is illustrated in table 7:

5.4 Run test cases

The test cases are run as during any other type of testing. During testing, failure data are
collected. The data form the basis for the certification, and are thus very important.

5.5 Certify the software

The failure data are input to the hypothesis testing model, see figure 3, which is used to
certify a particular reliability level. The reliability is measured in terms of MTBF, and the
certification is done with a given statistical confidence. The outcome from the certifica-
tion is reject, continue or accept. In the case of reject, the software is sent back for rede-
sign, in the case of continue, new test cases are selected and run, see section 5.3 and 5.4
above. If the outcome is accept the reliability level is certified and the testing can be ter-
minated.

6. Practical experience

Statistical Usage Testing can be applied at different phases in the software life cycle. The
testing can be applied during system testing or acceptance testing, but it may also be
applied on software components, [Wohlin94b], which then can be put into a repository for
future reuse. The reuse of components is one important aspect in the future to cope with
the cost of software development. Reuse requires that reliability measures of the reusable
components are stored with the component. Reliability measures must be stored together
with the usage profile which has been used in the certification process. Based on the relia-
bility of components it must be possible to calculate the system reliability. This issue is
further discussed in [Poore93].

The new method presented is not fully developed, but it is beginning to be implemented
and evaluated. Currently, a case study is conducted to evaluate the procedure. The study
includes dynamic analysis, simulation and finally testing. The results from performing
usage analysis during all these activities will form the basis for a thorough evaluation of
usage analysis in the software life cycle. Furthermore, usage modelling with a hierarchi-
cal Markov chain (SHY), which then is transformed into a usage model in a high level
design technique, has been used to generate usage test cases to the next release of a case
tool, [Runeson95]. It is concluded from this application, that both the SHY model and the
transformation into the high level design technique are useful concepts when generating

Table 7: Beginning of example test case

Event no. Event
1 Emp3: Off Hook
2 Emp3: Dial Internal Number
3 In/Out2: Call Subscriber
… …

16 (18)

usage cases. The main reason to transform the Markov model is to obtain tool support,
which can be used to automatically generate test cases.

It can from this reasoning be concluded that usage testing is a useful technique, which can
be applied at different phases in the life cycle with the common denominator that reliabil-
ity certification is needed to stay in control of the reliability.

Application of Statistical Usage Testing or similar techniques have started at different
companies, in particular in the USA. AT & T has reported that they have lowered the cost
for system testing by 56% and the total cost in the project by 11.5% by applying Opera-
tional Profile Testing, [Musa92, Musa93, Abramson92, Juhlin92]. The objective with
Operational Profile Testing is the same as for Statistical Usage Testing even if some of the
techniques to specify the usage are different. The usage testing technique is starting to
spread in Europe as well [Tann93, Cosmo93].

7. Conclusions

It is a fact that reliability or availability requirements are formulated as a part of the
requirements specification, but it is also clear that neither the developer nor the procurer
of the software is capable of evaluating these requirements. This is not satisfactory; the
society depends so heavily on the systems that it is of outermost importance to be able to
certify the software systems. A failure in operation may cause injuries either in terms of
humans or at least in terms of financial losses.

A model to specify the usage has been presented and a reliability model based on hypoth-
esis testing control chart has been described briefly. These techniques together have made
it possible to formulate a method, which can be applied during the testing phase to actu-
ally evaluate the reliability requirements. The application of the proposed method has
been illustrated in an example.

Some practical experiences reported in the literature as well as experience obtained while
applying the proposed techniques have been presented. The overall conclusion is, that the
only way towards control of the reliability before releasing a software product is through
application of usage testing techniques. It is the only technique that has shown to be able
to certify the reliability requirement in the same time as it is cost effective. The applica-
tion of the testing technique facilitates the formulation of a stopping criterion for software
testing, i.e. the testing can terminate as the required reliability level has been reached.

The time has come to change the way of testing software. The objective must not be to
find faults in general, but to show that the reliability requirements have been met. Usage
testing aims at finding the faults influencing the reliability the most, instead of just remov-
ing arbitrary faults. The technique is mature enough to be used and those managing the
transition first will probably be the ones delivering the products with the right reliability,
which not necessarily is the highest.

Acknowledgement

We would like to thank the anonymous referees for providing valuable comments which
have improved the article.

17 (18)

References

[Abramson92] Abramson, S. R., Jensen, B. D., Juhlin, B. D. and Spudic, C. L., “Inter-
national DEFINITY Quality Program”, Proceedings International
Switching Symposium, Yokohama, Japan, 1992.

[Adams84] Adams, E. N., “Optimizing Preventive Service of Software Products”,
IBM Journal of Research and Development, January 1984.

[DeMarco82] DeMarco, T., “Controlling Software Projects”, Yourdon Press, New
York, USA, 1982.

[Cobb90] Cobb, R. H., and Mills, H. D., “Engineering Software Under Statistical
Quality Control”, IEEE Software, pp. 44-54, November 1990.

[Cosmo93] Cosmo, H., Johansson, E., Runeson, P. Sixtensson, A. and Wohlin, C.
“Cleanroom Software Engineering in Telecommunication Applica-
tions”, Proceedings 6th International Conference on Software Engineer-
ing and its Applications, Paris, France, pp. 369-378, November 1993.

[Dyer92] Dyer, M., “The Cleanroom Approach to Quality Software Develop-
ment”, John Wiley & Sons, 1992.

[Goel79] Goel, A. L., and Okumoto, K., “Time-Dependent Error-Detection Rate
Model for Software Reliability and Other Performance Measures, IEEE
Transactions on Reliability, Vol. 28, No. 3, pp. 206-211, 1979.

[Goel85] Goel, A. L., “Software Reliability Models: Assumptions, Limitations
and Applicability”, IEEE Transactions on Software Engineering, Vol.
11, No. 12, pp. 1411-1423, 1985.

[Grant88] Grant, E., and Leavenworth, R. S., “Statistically Quality Control” Sixth
edition, McGraw-Hill Int., 1988.

[Jelinski72] Jelinski, Z., and Moranda, P., “Software Reliability Research”, Statisti-
cal Computer Performance Evaluation, pp.465-484, 1972.

[Juhlin92] Juhlin, B. D., “Implementing Operational Profiles to Measure System
Reliability”, Proceedings 3rd IEEE International Symposium on Soft-
ware Reliability Engineering, Raleigh, North Carolina, USA, pp. 286-
295, 1992.

[Linger94] Linger, R. C., “Cleanroom Process Model”, IEEE Software, pp. 50–58,
March 1994.

[Mills87] Mills, H. D., Dyer, M. and Linger, R. C., “Cleanroom Software Engi-
neering”, IEEE Software, pp. 19-24, September 1987.

[Mills88] Mills, H. D., and Poore, J. H., “Bringing Software Under Statistical
Quality Control”, Quality Progress, pp. 52-55, November 1988.

18 (18)

[Musa87] Musa, J. D., Iannino, A. and Okumoto, K., “Software Reliability, Meas-
urement, Prediction and Application”, McGraw-Hill Int. 1987.

[Musa92] Musa, J. D., “Software Reliability Engineering: Determining the Opera-
tional Profile”, Technical Report AT & T Bell Laboratories, Murray
Hill, NJ 07974, New Jersey, USA, 1992.

[Musa93] Musa, J. D., “Operational Profiles in Software Reliability Engineering”,
IEEE Software, pp. 14-32, March 1993.

[Myers79] Myers, G. J., “The Art of Software Testing”, Wiley Interscience 1979.

[NASA90] “The Cleanroom Case Study in the Software Engineering Laboratory –
SEL 90-002”, Software Engineering Laboratory, 1990.

[Poore93] Poore, J. H., Mills, H. D., and Mutchler, D., “Planning and Certifying
Software System Reliability”, IEEE Software, pp. 88-99, January 1993.

[Runeson92] Runeson, P., and Wohlin, C., “Usage Modelling: The Basis for Statisti-
cal Quality Control”, Proceedings 10th Annual Software Reliability
Symposium’, Denver, USA, pp.77–84, 1992.

[Runeson95] Runeson, P., Wesslén, A., Brantestam, J., and Sjöstedt, S., “Statistical
Usage Testing using SDL”, Submitted to 7th SDL Forum, Oslo, Nor-
way, 25-29 September 1995.

[Selby87] Selby, R. W., Basili, V. R., and Baker, F. T., “Cleanroom Software
Development: An Empirical Evaluation”, IEEE Transactions on Soft-
ware Engineering, Vol. 13, No. 9, September 1987.

[Tann93] Tann, L-G, “OS-32 and Cleanroom”, Proceedings 1st European Indus-
trial Symposium on Cleanroom Software Engineering, Copenhagen,
Denmark, October 1993.

[Whittaker93] Whittaker, J. A., and Poore, J. H.,“Markov Analysis of Software Speci-
fications”, ACM Transactions on Software Eng. Methodology, Vol. 2,
pp. 93–106, January 1993.

[Wohlin94a] Wohlin, C., “Managing Software Quality through Incremental Develop-
ment and Certification”, In Building Quality into Software, pp. 187-
202, edited by: M. Ross, C. A. Brebbia, G. Staples and J. Stapleton,
Computational Mechanics Publications, Southampton, United King-
dom, 1994.

[Wohlin94b] Wohlin, C., and Runeson, P., “Certification of Software Components”,
IEEE Transactions on Software Engineering, Vol. 20, No. 6, pp. 494-
499, 1994.

