

M. Svahnberg, C. Wohlin, L. Lundberg and M. Mattsson, "A Quality-Driven Decision
Support Method for Identifying Software Architecture Candidates", International
Journal of Software Engineering and Knowledge Management, Vol. 13, No. 5, pp.

547-573, 2003.

A Quality-Driven Decision-Support Method for Identifying
Software Architecture Candidates

Mikael Svahnberg, Claes Wohlin, Lars Lundberg, Michael Mattsson
Department of Software Engineering and Computer Science

Blekinge Institute of Technology, PO Box 520, S-372 25 Ronneby SWEDEN
Phone: +46 457 385000

[Mikael.Svahnberg|Claes.Wohlin|Lars.Lundberg|Michael.Mattsson]@bth.se

ABSTRACT
To sustain the qualities of a software system during evolution, and
to adapt the quality attributes as the requirements evolve, it is nec-
essary to have a clear software architecture that is understood by
all developers and to which all changes to the system adheres. This
software architecture can be created beforehand, but must also be
updated as the domain of the software, and hence the requirements
on the software system evolve. Creating a software architecture for
a system or part of a system so that the architecture fulfils the
desired quality requirements is often hard. In this paper we propose
a decision-support method to aid in the understanding of different
architecture candidates for a software system. We propose a
method that is adaptable with respect to both the set of potential
architecture candidates and quality attributes relevant for the sys-
tem’s domain to help in this task. The method creates a support
framework, using a multi-criteria decision method, supporting
comparison of different software architecture candidates for a spe-
cific software quality attribute and vice versa, and then uses this
support framework to reach a consensus on the benefits and liabili-
ties of the different software architecture candidates and to
increase the confidence in the resulting architecture decision.

Categories and Subject Descriptors
D2.2 [Design Tools and Principles] Decision Tables, D2.11 [Soft-
ware Architectures] Patterns.

General Terms
Design, Experimentation

Keywords
Software Architectures, Quality Attributes, Analytic Hierarchy
Process

1. INTRODUCTION
In [20] Parnas describes the phenomenon of software aging. He
ascribes this to two causes: (1) the domain changes around the
software and (2) changes to the system are introduced in a careless
manner, which degrades the system. Part of the solution to both of
these problems may be found in having and maintaining a clear
and updated software architecture for a software system. As is also
described in [20], having an architecture that all changes must be
related to will help to prevent the second form of decay. As the
domain of the software evolves, so will the requirements on the
software system, and hence the architecture needs to be re-evalu-
ated so that it still reflects a modern system that fits the evolved
domain. By doing this on a regular basis, we believe that the first
form of aging can be, if not hindered, so at least relieved.

Furthermore, an appropriate architecture is not only governed by
functional requirements, but to a large extent by quality attributes
[2][4][8]. However, knowing this, it is still a non-trivial task to cre-

ate an appropriate architecture. There are usually more than one
quality attribute involved in a system, and the knowledge of the
benefits and drawbacks of different software architectures with
respect to different quality attributes is not yet an exact science.
Decisions are often taken on intuition, relying on the experience of
senior software developers.
Quality cannot be added to the system as an afterthought; it has to
be built into the system from the beginning. Thus, the software
architecture for any software system ought to be based on func-
tional needs, domain specificities and quality requirements. Hence,
support is needed. The focus in this paper is on presenting some
key aspects for a method supporting the understanding of architec-
ture candidates based on quality attributes. Such a method provides
one important input to decision-makers when designing a suitable
system architecture, together with other considerations.
The method in this paper has the additional benefit that the identi-
fication of which architecture to use is based on the experience of a
group of software engineers, and each participant’s opinions and
reasons for why a particular architecture is heard before a decision
is taken. This ensures not only a broader decision base, but also
creates a learning effect, allowing the participants to learn from
each others experiences. Moreover, it allows discussions to be held
focusing on the areas where the participants’ experiences differ.
The terms “software architecture” and “architecture structure” are
used rather loosely to denote an architecture or an architecture pro-
posal of a software system which can be on any level of granular-
ity, such as a software product, a software module, software
subsystem or software component. In this paper, we only focus on
the software artefacts, although the proposed method may be appli-
cable on a system level as well.

1.1 Description of Problem
In this paper, we address the following problem:

Given a set of requirements on quality attributes for a system
and a set of architecture candidates, which architecture candi-
date is the most appropriate, i.e. fulfils the quality require-
ments on the system best?

This problem is also illustrated in Figure 1.

Figure 1. Illustration of Problem

Architecture
Structure

Architecture
Structure

Architecture
Candidates

Quality
Req.

Quality
Req.

Quality
Req.

Decision
Process

Architecture
Candidate

Uncertainty
Indicator

If a structured way to understand the benefits and liabilities of dif-
ferent architecture candidates is found and used this may increase
the confidence in the decisions taken, and hence the software sys-
tems developed are not forced into a mould which may not be
entirely suitable for the problem at hand. Moreover, by re-evaluat-
ing the architecture decisions regularly, it is ensured that the archi-
tecture always reflect the current quality requirements, or we are
able to strive in the right direction.
As shown by Johansson et al. [11], different stakeholders tend to
have different views of the importance of various quality require-
ments for a system, and the differing experiences of the software
developers may also lead to a different interpretation of the
strengths and weaknesses of different architectures. A structured
method facilitates in this situation because it enables us to identify
where stakeholders and developers have differing opinions.

1.2 Context of Method and Related Work
The objective of the method proposed in this paper is to enable a
quantified understanding of different architecture candidates for a
software system. We assume, for the sake of this method, that a
small set of architecture candidates is developed, after which the
proposed method provides support for identifying and discussing
which of the architecture candidates is best suited to meet the qual-
ity requirements of the software system. This architecture may
either be the architecture that the system is designed according to,
or an architecture to strive towards when evolving the system. As
is indicated in e.g. [12], architectures degrade over time unless
something is made to prevent this. One way may be to have a clear
architecture to relate changes to.

It is not our intention that the proposed method should be used as
the only method when designing a software architecture. Rather,
we suggest that the method is used in conjunction with other meth-
ods, possibly more qualitative in nature, or focusing on other
aspects of the software development, such as the functional
requirements. Examples of such methods are the design method
proposed by Hofmeister et al. [8], the Rational Unified Process
[10] and the QASAR design method [4]. The way we currently see
it, these methods are used to create software architectures, which
constitute candidate designs for a system, after which the method
proposed in this paper is used to further understand and discern
between the strengths and weaknesses of the different architecture
candidates, and possibly comparing with the current architecture of
the system.
The context of the method is thus a specific situation within a par-
ticular company, where either the initial architecture of a system is
designed, or the current architecture of a system is evaluated
against newer architecture suggestions. The architecture candi-
dates are identified within this context, and they are also evaluated
within this context. Similarly, the quality attributes are only the
ones that are relevant for the domain in question and for the busi-
ness model of the company.
Architecture evaluations can be separated into early architecture
evaluations and late architecture evaluations [18], and different
methods are more or less suitable for either of these two types.
Late architecture evaluation is conducted during later stages of the
software development process when there is a software system or
at least a detailed design available on which more concrete metrics
can be collected. Lindvall et al. 2003 [18] is an example of this.
Early architecture evaluation, on the other hand, is concerned with
deciding at an early stage during the software development process
what qualities a software architecture have a potential for exhibit-
ing.

Early architecture evaluations are commonly based on the experi-
ences of the software developers and logical reasoning, as there are
usually no tangible artifacts on which to e.g. perform simulations
or collecting metrics. Oftentimes, this is aided by first specifying,
categorising and prioritizing scenarios. These scenarios then
enables the evaluators to focus on one issue at a time.
Examples of evaluation methods focused on early evaluation and
using scenarios are the Software Architecture Analysis Method
(SAAM) [2] that is solely based on the use of scenarios, its succes-
sor the Architecture Tradeoff Analysis Method (ATAM) [7] that is
more flexible in the possible evaluation techniques (ATAM can use
e.g. mathematical models for evaluations of some quality
attributes), and various methods focusing on specific quality
attributes such as modifiability [3]. Another method focusing on
scenarios is Global Analysis [8], although this is more a method
for designing architectures than for evaluating them. However,
evaluations is a constant and ongoing activity within Global Anal-
ysis.
While these methods tend to be performed as a group activity, the
method used in this paper allows each participant to first form his
or her own opinion, and then the method facilitates in focusing dis-
cussions around those issues where the involved parties have dif-
ferent opinions. This means, of course, that issues that all
participants agree on are not covered and that the outcome is an
increased joint understanding of what needs to be done.
Moreover, the methods above are focused on evaluating a single
architecture to find out if and where there may be problems in it.
The method in this paper is more aimed towards finding out which
architecture candidate, of a set of architecture candidates, has the
most potential to support the mix of quality attributes for a particu-
lar system to build. Accordingly, the method used in this paper
does not produce any absolute measures on the architecture candi-
dates. Rather, it produces judgements relative to the other architec-
ture candidates on how good or bad the architecture candidates are
with respect to a particular quality attribute, much in the same way
as Morisio et al. 2002 [19] compares software artifacts with pre-
defined ideal artifacts.
A final difference is that the method in this paper is not based on
scenarios as the aforementioned methods are (except for Morisio et
al. [19]). This may, however, be a possible and interesting future
extension.

1.3 Outline of Paper
The remainder of this paper is organised as follows. In Section 2
we present the proposed method for understanding software archi-
tectures based on quality attributes. In Section 3 we present a case
study where the proposed method is used. The method and poten-
tial extensions are discussed in Section 4. Finally, the paper is sum-
marised in Section 5.

2. METHOD
The objective of this paper is to propose a method for pinpointing a
software architecture candidate that best fit the quality require-
ments on the software product in question. The method also allow
focused discussions to create a joint understanding of the architec-
ture candidates. The method is broken down into a number of con-
crete steps.

1. Identify potential software architecture candidates and key
quality attributes.

2. Create method framework.
3. Prioritize the quality attributes for the software system to be

developed.

4. Identify which software architecture candidate best fits the
list of prioritized quality attributes.

5. Determine the uncertainty in the identification.
6. Discuss the individual frameworks, the synthesized priori-

tized list of quality attributes and the recommended software
architecture candidate to reach a consensus.

These steps are illustrated in Figure 2. As can be seen, the first step
is performed before the actual analysis process begins, but we
include it nevertheless as it is a vital part of any architecture design
process to identify potential candidates. Moreover, the FAS, FQA,
individual FAS and FQA, FVC and PQA referred to are outcomes
of step 2 and 3, and are further discussed in Section 2.2 and Sec-
tion 2.3. Each of the steps in Figure 2 corresponds to a subsection
below, where the steps are described in further detail.

During the remainder of this paper, we will use a number of acro-
nyms to refer to different sets of data. These acronyms are pre-
sented in Table 1.

2.1 Step 1: Identify Candidates
This step is fairly simple to describe, although not trivial in a
development situation. The intention is that possible software
architecture candidates are created, listed and described so that
people understand the differences and similarities between them.
Further, the key quality attributes for the system to be developed
are identified, listed and described.

It is outside the scope of this paper to describe how the architecture
candidates are created, but as mentioned earlier, various design
methods (e.g. [4][8][10]) can be used to create the architecture
candidates and standard requirements engineering methods (e.g.
[6][17]) can be used to obtain the quality attributes.
The outcome of this step is two lists containing the relevant soft-
ware architecture candidates and quality attributes respectively. As
mentioned in Section 1.2, the actual candidates and attributes on
the lists are dependent on the application domain and the situation
in which the software is developed.
We would again like to stress the fact that the architecture candi-
dates used can be on any level of granularity on any level of the
system (e.g. product, module, subsystem or component). Similarly,
we do not put any constraints on the level of granularity for the
quality attributes. However, in our experience it is beneficial if all
quality attributes are on the same level of granularity, as this facili-
tates comparison between the quality attributes. Moreover it may

be easier if the specific quality attributes are grouped into catego-
ries to facilitate the prioritization process. The reason why this is
easier is simply that the number of inputs to the creation of the
framework decreases, which reduces the number of comparisons
that need to be made.
This step produces the inputs to the rest of the decision process in
Figure 1, in that it generates a set of n architecture candidates and a
set of k quality attributes.

Figure 2. Illustration of Solution

Architecture
Structure

Architecture
Structure

Architecture
Candidates

Quality
Attribute

Quality
Attribute

Quality
Attributes

Architecture
Structure

Uncertainty
Indicator

Step 1
Identify Candidates

Step 2
Create Framework

Step 3
Prioritize

Quality Attributes

Step 4
Suggest Architecture

Step 5
Determine Uncertainty

FQA

PQA

Top-level Decision Process

Architecture
Structure

Architecture
Structure

Architecture
Ideas

Quality
Requirements

Quality
Requirements

Quality
Requirements

FVC

Candidate

FAS

Step 6
Hold Consensus

Discussion

Individual FQA
Individual FQA

Individual FQA

Individual FAS
Individual FAS

Individual FAS

Architecture
Decision

Table 1. Acronyms used in paper

Acronym Description

FQA Framework for Quality Attributes. A set of vectors
where architecture structures are ranked according
to their ability to meet particular quality attributes.

FAS Framework for Architecture Structures. A set of
vectors where the support for different quality
attributes are ranked for each architecture struc-
ture.

Individ-
ual FQA

Contains the same as FQA, but from the perspec-
tive of only one individual. The individual FQA’s
are combined into the FQA.

Individ-
ual FAS

Contains the same as FAS, but from the perspec-
tive of only one individual. The individual FAS’s
are combined into the FAS.

FVC Framework for Variance Calculation. A vector of
variance indicators for a FQA vector set.

PQA Prioritized list of Quality Attributes. A list of qual-
ity attributes prioritized for a system to design.

FQA’ An intermediate result during the process of gen-
erating the FQAr.

FQAr A refined version of the FQA, where the values of
FAS have been used to increase the accuracy.

2.2 Step 2: Create Framework
In step two of the method the method framework, consisting of
two tables, is created and refined. In this section we describe fur-
ther how this is done.

In Section 2.2.1 we discuss how the data is obtained that is used to
create the framework. In Section 2.2.2 we describe how the data
obtained from each individual is combined into two tables with a
set of vectors in each (we call these vector sets Framework for
Quality Attributes (FQA) and Framework for Architecture Struc-
tures (FAS), respectively). In Section 2.2.3 we discuss how these
two tables are related to each other and how the FAS can be used to
improve the accuracy of FQA. As a result from this step a refined
vector set (called the FQAr) is generated. A final outcome of corre-
lating FQA and FAS is that we get an indication of the variance in
the data (represented in the vector FVC). How this is obtained is
presented in Section 2.2.4.
These sub-steps within step two, and the different vector sets cre-
ated during the process are illustrated in Figure 3. In this figure we
see that a number of intermediate results are produced (such as the
FAS and the individual FAS and FQA), and these are later used in
step 6, where the framework is discussed.
Putting what is done in step two into the context of the rest of the
method, there is a minor change to the solution outlined in Figure
2, as illustrated in Figure 4 (for clarity, we have left out processes
and data sets not involved in the refined view).

2.2.1 Obtaining Individual Data for Framework
The basic idea of our method is that it is possible to understand
how good certain software architecture candidates are for different
quality attributes. This implies that we can determine two things:
• A comparison of different software architecture candidates

for a specific software quality attribute.
• A comparison of different quality attributes for a specific

software architecture candidate.
To succeed in this a method for ranking software architecture can-
didates and quality attributes respectively is needed. Such methods

are available from the management science literature, for example
in Anderson et al. 2000 [1]. The methods are often denoted multi-
criteria decision processes. One such method is the Analytic Hier-
archy Process (described in further detail below), which was origi-
nally proposed by Saaty 1980 [21].

Applying a method such as the Analytic Hierarchy Process in our
context means that two sets of vectors may be created. The first set
of vectors is connected to prioritizing the software architecture
candidates with respect to a certain quality attribute. This means
that it is possible to determine the order in which different software
architecture candidates are believed to support a specific quality
attribute. Moreover, it is possible to get a relative weight using the
Analytic Hierarchy Process. The latter means that it is possible to
determine how much better a specific candidate is with respect to a
quality attribute. The outcome of such a comparison is discussed in
Section 3.

In this step of our proposed method, we use the AHP method to
create vectors signifying the relative support for different quality
attributes within architecture candidates (FAS) and the relative
ranking of how well different architecture candidates support dif-
ferent quality attributes (FQA). Each participant in the architecture
design decision creates an individual set of data (corresponding to
step 2.1 in Figure 3.), i.e. an individual FAS and an individual
FQA. These are then synthesized into a combined view, as
described in Section 2.2.2.

Analytic Hierarchy Process. AHP has previously been described,
evaluated and successfully used in similar settings and in other
areas of software engineering (e.g. [13][14][23]). Briefly, AHP
consists of a set of steps, where all combinations of elements are
evaluated pair-wise, and according to a certain scale, as illustrated
in Figure 5. The question to answer for each pair-wise comparison
is which of the two elements, i or j is more important, and how
much more important it is. This is rated by interpreting the values
as presented in Table 2.

These comparisons are then transferred into a matrix, where
n is the number of elements, together with the reciprocal values.
After this is done, the eigenvector of the matrix is computed.
[21][22] proposes a method called averaging over normalised col-
umns to do this. This results in an estimation of the eigenvalues of
the matrix, and is called the priority vector. The priority vector is
the primary output of applying AHP.

Figure 3. Illustration of step two of solution

Architecture
Structure

Architecture
Structure

Architecture
Candidates

Quality
Attribute

Quality
Attribute

Quality
Attributes

Step 2.1
Obtain Individual Data

Step 2.4
Calculate Variance

Step 2.3
Refine Data

FQA

FAS

FQA’
FQA’

FQA’

FQAr

FQAr

FVC

Step two: Create Framework

Individual FQA
Individual FQA

Individual FQA

Individual FAS
Individual FAS

Individual FAS

Step 2.2
Synthesize Data

Figure 4. Refinements to Process

Architecture
Structure

Architecture
Structure

Architecture
Candidates

Quality
Attribute

Quality
Attribute

Quality
Attributes

Step 2
Create Framework

Step 4
Suggest Architecture

FQAr

Candidate

i j
9 7 5 3 1 3 5 7 9

Figure 5. The scale for the AHP comparison.

n n×

Next, the fact that AHP uses more comparisons than necessary (i.e.
 comparisons) is used to evaluate the consistency

of the rating. A consistency ratio (CR) is calculated, which indi-
cates the amount of contradictions and inconsistencies between the
pair-wise comparisons. A consistency ratio of 0.10 or less is,
according to [21][22], considered acceptable even if it is pointed
out that higher values are often obtained. Hence 0.10 may be too
hard, but it nevertheless indicates an approximate size of the con-
sistency ratios to expect.

A more extensive description of AHP can be found in e.g.
[13][21][22] and [25].

2.2.2 Synthesize Data
The individual FAS and FQA created in the previous section are
then synthesized into a combined view of all of the participants.
We have found that the easiest way to do this is by taking the
median values of all of the participants.

Examples of the FQA and the FAS - be they individual or synthe-
sized can be found in Table 3 and Table 4, respectively.

In Table 3, we see four different architecture candidates, numbered
from one to four, and four different quality attributes, equally num-
bered from one to four. For each of the quality attributes, the archi-
tecture candidates relative support for the quality attribute in
question is shown. The values, denoted FQAi,j in this example, are
normalised so that each row sums up to 1.

The second set of vectors is obtained in the same way, but here the
different quality attributes are prioritized for a specific software
architecture candidate. This means that the relative support for a
quality attribute of a candidate can be determined. This set of vec-
tors are shown in Table 4 with values FASi,j in the cells.
It should be noted that, for example, both FQA1,1 and FAS1,1 are
measures of support for QA 1 by SA 1, although from different
perspectives. This fact is used as part of the method to determine
the uncertainty in the identification of an appropriate software
architecture candidate. This is further elaborated in Section 2.2.3
and Section 2.2.4.
These two sets of vectors provide a framework for working with
the software architectures with respect to software quality
attributes. Presently, the main usage of the combined framework is
to indicate a suitable software architecture candidate for a system
to design.

2.2.3 Adjusting the FQA
The fact that we are able to do both row-wise comparisons (FQA)
and column-wise comparisons (FAS) opens up some possibilities
to increase the quality of our estimations and at the same time
determining the uncertainty in our predictions. The nature of these
new possibilities can be understood by considering the following
very small example.
Consider a situation with two architecture candidates, i.e., n = 2,
and two quality attributes, i.e. k = 2, and assume that we have
obtained the FQA and FAS in Table 5 and Table 6.
Let s1,1 denote the support provided by Architecture 1 for QA 1
and s2,1 denote the support provided by Architecture 1 for QA 2.
Furthermore, let s1,2 denote the support provided by Architecture 2
for QA 1 and s2,2 denote the support provided by Architecture 2

Table 2: Scale for pairwise comparison using AHP
[21][22].

Relative
intensity Definition Explanation

1 Of equal impor-
tance

The two variables (i
and j) are of equal
importance.

3 Slightly more
important

One variable is
slightly more impor-
tant than the other.

5 Highly more
important

One variable is highly
more important than
the other.

7 Very highly more
important

One variable is very
highly more impor-
tant than the other.

9 Extremely more
important

One variable is
extremely more
important than the
other.

2, 4, 6, 8 Intermediate values Used when compro-
mising between the
other numbers.

Reciprocal If variable i has one of the above numbers
assigned to it when compared with variable
j, then j has the value 1/number assigned to
it when compared with i. More formally if
nij = x then nji = 1/x.

n n 1–()× 2⁄ Table 3. Example FQA - Row normalised vector set

AC 1 AC 2 AC 3 AC 4 Sum

QA 1 FQA1,1 FQA1,2 FQA1,3 FQA1,4 1

QA 2 FQA2,1 FQA2,2 FQA2,3 FQA2,4 1

QA 3 FQA3,1 FQA3,2 FQA3,3 FQA3,4 1

QA 4 FQA4,1 FQA4,2 FQA4,3 FQA4,4 1

Table 4. Example FAS - Column normalised vector set

AC 1 AC 2 AC 3 AC 4

QA 1 FAS1,1 FAS1,2 FAS1,3 FAS1,4

QA 2 FAS2,1 FAS2,2 FAS2,3 FAS2,4

QA 3 FAS3,1 FAS3,2 FAS3,3 FAS3,4

QA 4 FAS4,1 FAS4,2 FAS4,3 FAS4,4

Sum 1 1 1 1

Table 5. FQA vector set

AC 1 AC 2

QA 1 0.6 0.4

QA 2 0.3 0.7

Table 6. FAS vector set

AC 1 AC 2

QA 1 0.5 0.6

QA 2 0.5 0.4

for QA 2. From column one in the FAS we see that s1,1 = s2,1. Fur-
thermore from the FQA we get the relations: s1,1 =3s1,2/2 and s2,1
= 3s2,2/7. From these three equations we get: 7s1,2 = 2s2,2. This is,
however, inconsistent with the relation obtained by looking at col-
umn two in the FAS, i.e., the relation obtained by this column is
s1,2 = 3s2,2/2. Consequently, the two vector sets are incompatible,
which of course is possible (and also highly likely) since the values
in the vector sets are obtained from (expert) opinions and experi-
ences.

The fact that the information in the FQA and FAS is incompatible
can be used in (at least) two ways: first we can use the information
in the FAS for adjusting the values in the FQA, which is our main
concern; second, we can calculate a variance value (or some other
uncertainty indicator) based on the degree of inconsistency
between the two vector sets. In this section we discuss some sim-
ple techniques for doing this.

The calculation in this section is based on the assumption that the
values in the FQA and FAS are of equal quality. Using the AHP
method, this can be ascertained as AHP generates a consistency
index rating how consistent the answers are with each other. The
basic strategy is then to calculate k FQA’-vector sets, such that
each FQA’ is compatible with the FAS and one row in the FQA.
Having obtained these k vector sets, we adjust the FQA by simply
taking the average of these k FQA’-vector sets and k copies of the
FQA thus obtaining the FQAr which we can then use for identify-
ing an appropriate architecture candidate (see Section 2.4). The
FQA’ vector sets stem from the FAS and by taking the average
between the k FQA’-vector sets and k copies of the FQA, the FQA
and FAS will contribute equally to the FQAr.

From the discussion above we see that based on the FAS and row
one in the FQA it is possible to calculate another row (i) in the new
FQA’-vector set in the following way:

.

In order not to complicate the presentation we assume that all
involved values are larger than zero.

Similarly, based on the FAS and row two in the FQA it is possible
to calculate another row (i) in the new FQA’-vector set in the fol-

lowing way: .

If we consider the small 2x2-vector sets in Table 5 and Table 6, we
get the two FQA’ vector sets in Table 7 and Table 8.

We see that the row sums in the two FQA’ vector sets are no longer
normalised to one. It is not obvious how one should handle this,
but we suggest that we add an additional step where the sum of
each row is normalised to one, so that the values in the FQA’ tables
are of the same magnitude as the already normalised FQA table.
The normalised FQA’ vector sets will thus be as presented in Table
9 and Table 10.

By taking the average of these two vector sets and two copies of
the FQA we get the FQAr in Table 11 which was our goal.

2.2.4 Variance Calculation
Since each value in the FQAr is the average of 2k values (k times
the value in the FQA and the value in the k normalised FQA’-vec-
tor sets) we can calculate the variance in the ordinary way. We will
thus obtain a variance vector set - the FVC-vector set. For the
small example above we would get the FVC in Table 12.

This variance measurement is used in later stages to determine by
what level of certainty the framework can be used as a support
when deciding what architecture to use.

2.3 Step 3: Prioritize Quality Attributes
The next step of the method is to conduct a prioritization of the
quality attributes for the software system in question. Different
methods may be applied for prioritization [14]. This includes sub-
jective judgement with or without consensus building and methods
such as providing a total sum of points to be divided between the
items or aspects you would like to prioritize. Most methods have
however weaknesses and it is mostly hard to judge the goodness of
the prioritization.

The Analytic Hierarchy Process (AHP) addresses some of these
problems [21], since it allows for a calculation of a consistency
index for the prioritization. This opportunity arises from the fact
that AHP is based on all pair-wise comparisons of whatever we
would like to prioritize. In our example (Table 3 and Table 4), we
need to perform six comparisons for the quality attributes, since
we have four quality attributes.
The outcome of the prioritization process is one vector per partici-
pant with relative weights on the importance of the different qual-
ity attributes for the software system in question. The median
value of these individual vectors are then used to create a single
vector, called PQA. An example of a PQA can be seen in Table 13,
where the different priorities are denoted PQAi.
There is a price to pay when using a method such as AHP: the
number of comparisons grows fairly quickly. On the other hand, it
is not likely that we have a huge number of architecture candidates
or quality attributes to prioritize (either for the framework or for

FQA'i j,
FQA1 j, FASi j,

FAS1 j,
--------------------------------------=

FQA'i j,
FQA2 j, FASi j,

FAS2 j,
--------------------------------------=

Table 7. FQA’ based on
row one

AC 1 AC 2

QA 1 0.6 0.4

QA 2 0.6 0.27

Table 8. FQA’ based on
row two

AC 1 AC 2

QA 1 0.3 1.05

QA 2 0.3 0.7

Table 9. Normalised FQA’
based on row one

AC 1 AC 2 Sum

QA 1 0.6 0.4 1

QA 2 0.69 0.31 1

Table 10. Normalised FQA’
based on row two

AC 1 AC 2 Sum

QA 1 0.22 0.78 1

QA 2 0.3 0.7 1

Table 11. FQAr

AC 1 AC 2 Sum

QA 1 0.5 0.5 1

QA 2 0.4 0.6 1

Table 12. FVC

AC 1 AC 2

QA 1 0.036 0.036

QA 2 0.038 0.038

the prioritization of quality attributes of the software system to
develop). The number of architecture candidates is limited by the
amount of time and effort it takes to develop them, so in a practical
setting there will most likely not be more than a few architecture
candidates developed. The number of quality attributes may be
larger, but this number can be reduced by grouping the quality
attributes into categories, each representing some aspect of the sys-
tem’s requirements. The number of quality attributes can also be
reduced by selecting a smaller set of quality attributes to focus on.
In our experience, for most software systems there is a small set of
easily identified quality attributes that are more relevant to con-
sider, and these are the ones that should be used for the framework
and the PQA.
Further, it should be noted that each comparison is conducted very
quickly. This is based on experience from conducting this type of
studies in another area [14]. We have also conducted a related
study [25], in which we used five architectures and six quality
attributes. This resulted in 135 questions being asked to each par-
ticipant to create the framework (the FAS and FQA), which took
the participants approximately one hour of concentrated work to
complete. (The first result came in after 45 minutes and the last
came in after 70 minutes.)
The outcome of this step is a vector with the different quality
attributes prioritized, and with a relative weight of their impor-
tance. This vector is used in the next step, where the data is used to
determine the most appropriate software architecture candidate for
the given situation.

2.4 Step 4: Suggest Architecture Candidate
As discussed above, we can obtain two kinds of vector sets: the
FQA and the FAS (plus the derived FQAr). Based on these vector
sets and the PQA-vector we are going to identify an appropriate
architecture candidate. It may at first glance be tempting to try to
correlate the PQA-vector with the columns in the FAS, and select
the architecture candidate which has the most similar profile. Con-
sider for example the following small example with a FAS in Table
14 and a PQA-vector in Table 16.

Without going into details about how we define the correlation, it
is clear that the profile of Architecture 1 is closer to the PQA-vec-

tor than the profile of Architecture 2. The obvious conclusion
would thus be to select Architecture 1 in this case. However,
assume that the FAS corresponds to the FQA shown in Table 15.
From the FQA we see that Architectures 1 and 2 are equally good
for QA 1, and that Architecture 2 is better for all other quality
attributes, i.e., we should in fact select Architecture 2. The exam-
ple above is somewhat naive since Architecture 2 is consistently
better than Architecture 1. However, the example illustrates that a
good correlation between a column in the FAS and the PQA-vector
is not a good criterion for identifying an architecture candidate.
Instead we suggest that the FQA or the derived FQAr should be
used for pinpointing a suitable architecture.
We therefore suggest a very direct method which is: Suggest
architecture candidate i such that

 is as large as possible.

2.5 Step 5: Determine Uncertainty
In order to obtain the uncertainty in our suggestion we can calcu-
late the variance for each architecture i given the PQA-vector and
the FVC. From the rules of variance propagation we know that the
variance for architecture candidate i is obtained in the following

way .

We are thus able to determine the uncertainty in our suggestion. If
there is high uncertainty, this may indicate that the architecture
candidates and quality attributes are not so well understood, and
that further investigations are necessary before the final architec-
ture decision is taken.

2.6 Step 6: Consensus Discussion
In this step, which is elaborated further on in [24], we use the indi-
vidual FQA and FAS, the PQA and the suggested software archi-
tecture as a foundation for a discussion about the different
architecture alternatives, the quality attributes and their relation.
The basic idea is that by studying the differences among the indi-
vidual FQA’s and FAS’s we are able to, with relatively easy mea-
sures, pinpoint where the participants are in disagreement. The
areas where there are disagreements are then used to kindle discus-
sions, to find out why there is a difference. Reasons can be e.g. that
the participants represent different development units, have contact
with different customers, have different experiences or have differ-
ent interpretations of the architecture candidates or quality
attributes. Some of these reasons are also described in [11].
If participants disagree on the meaning of a certain quality
attribute, or of a certain architecture candidate, this is a disagree-
ment that would manifest itself later during the development pro-
cess and, in a worst case, be the source of flaws in the delivered
product. By instead venting the different opinions at an early stage,
some of these problems may be avoided.

Table 13. Prioritized quality
attributes for system to develop.

Attribute Priority

QA 1 PQA1

QA 2 PQA2

QA 3 PQA3

QA 4 PQA4

Sum 1

Table 14. Example FAS

AC 1 AC 2

QA 1 0.4 0.25

QA 2 0.3 0.25

QA 3 0.2 0.25

QA 4 0.1 0.25

Table 15. Example FQA

AC 1 AC 2

QA 1 0.5 0.5

QA 2 0.38 0.62

QA 3 0.25 0.75

QA 4 0.12 0.88

Table 16. PQA-vector

Attribute Priority

QA 1 0.4

QA 2 0.3

QA 3 0.2

QA 4 0.1

PQAjFQArj i,j 1=
k

∑

PQAj
2FVCj i,j 1=

k
∑

Preparations for the consensus discussion meeting is done by
studying the individual FAS and FQA and identify for each data-
point in these if and where there are participants that disagree with
the rest of the participants. This can manifest itself in several ways,
e.g.:
• A few participants diverge from the general consensus.
• A few participants form a small group that diverge from the

general consensus.
• A few participants diverge in the same direction from the gen-

eral consensus, but are not so much in consensus with each
other that they can be said to form a group.

• The participants form two or more distinct groups.
During the preparations, the task is to identify issues for discussion
where any of the above has occurred. This can e.g. be done by cal-
culating the sum of the squared distance to the mean value over all
participants and then selecting those data-points where this sum is
above a certain threshold value, or the discussion issues can be
identified by visually inspecting graphs where the values of all
individuals are plotted or one can use a combination of these two
techniques.

The identified issues are then discussed during the consensus dis-
cussion meeting, allowing both those participants that diverge
from the general consensus as well as the participants representing
the general consensus to voice their opinions and give a rationale
to their respective viewpoints.
The most tangible output from the consensus discussion meeting is
a list of issues where the discussions have shown that it is neces-
sary to conduct further investigations, or issues that must be taken
care of in a particular way for the project to succeed. Among the
less tangible outputs is the increased confidence that all are striv-
ing in the same direction and that the architecture decision is the
correct decision, and the knowledge that participants will have
gained from each others experiences and opinions.

2.7 Summary
In Section 2.1 architecture candidates are created and quality
attributes are identified, upon which the FQA, FAS and the FQAr
vector sets created in Section 2.2 are based. These are then used to
suggest an architecture candidate in Section 2.4.

Parallel to this, a variance vector set, FVC, is created in Section
2.2, which is used in Section 2.5 to generate indications of the
uncertainty in the identification of the architecture candidate.
The outcome is thus an architecture candidate, how much better
suited this candidate is to the problem than its competitors, and
how certain we are of the results.
All of the above is then used in the last step, described in Section
2.6, where differences between the participants opinions, and their
opinions of the suggested architecture candidate is discussed. This
creates a better joint understanding and an increased confidence in
that the right decision is ultimately taken.

3. A CASE STUDY USING THE METHOD
In order to illustrate the method described in this paper, we present
a summary of an experiment conducted using the method. This is
done to give a more comprehensive presentation of how the
method can be used.
The investigation is conducted in an industry setting, with experi-
enced practitioners of software engineering. Specifically, we con-
duct the study together with Danaher Motion Särö AB1, a Swedish

company that develops software for automatic guided vehicles
(AGVs) which are, for example, used to automatically haul goods
on factory floors.
Within this setting we are studying a particular situation where a
redesign of the existing system allows the company to question the
previous architectures (logical as well as physical architectures), in
order to possibly obtain an architecture that better suit the quality
requirements. We focus on a single software system from the prod-
uct line of systems developed by the company, of which most are
necessary to get an AGV system operational.
Below, we describe how each step of the method is applied in the
study.

3.1 Step 1: Identify Candidates
Below, we describe the software architecture candidates that the
company has developed, and the identified quality attributes.
Architectures. Three architecture candidates were developed for
the subsystem in focus of our study. For reasons of confidentiality
we are unable to give the full picture of the architecture candidates,
but the architecture candidates describe three variations of how to
physically distribute the logic among a set of hardware compo-
nents. Specifically, the architectures involve:
• A one-CPU solution, where the entire system in question is

gathered on a single CPU board. We refer to this as Architec-
ture A.

• A two-CPU solution, where parts of the system have been
placed on a separate CPU and communication is done over a
generic communications bus. We refer to this as Architecture
B.

• A centralised solution, where the first CPU has been replaced
with execution cycles in a central computer, shared over all
vehicles. We refer to this as Architecture C.

These architectures were developed by a person from the company,
and described in diagrams and text together with a description of
the functional scope of the system, also described with diagrams
and text. The description of each architecture consists of two
pages: one with a UML diagram and one with an explanatory text.

Quality Attributes. After the architectures were developed, five
quality attributes relevant for this system were identified and
described. We waited with this until the architectures were devel-
oped to be sure that the quality attributes were indeed relevant.
The quality attributes identified and the descriptions of them that
was distributed to the participants are:
• Cost. This quality attribute involves aspects such as develop-

ment cost, maintenance costs and production cost, but also
indirectly time-to-market. Furthermore, the ability to under-
stand the system and the ability to allocate resources with the
right competence is also indirectly included in this attribute.

• Functional Flexibility. With this we mean the ability to con-
figure and deliver with different subsets of functionality, but
also the ability to add new functionality and remove or
replace old functionality. To deliver with different subsets of
functionality mainly means adding different sets of function-
ality on top of a common core, but it may also mean that the
components (both hardware and software) of the common
core may need to be extended or replaced to accommodate
parts of the desired functionality.

• Performance Flexibility. This quality attribute concerns the
ability to configure different soft- and hardware solutions that
supports different maximum speeds. This may have impact on
the hardware (e.g. faster CPUs), but may also influence the
rate at which software components must communicate, or1. http://www.danahermotion.se

even the algorithm by which the software controls the vehi-
cle.

• Security Flexibility. With this we mean the ability to config-
ure and deliver solutions with varying degrees of security and
safety. This can, for example, be done by adding redundant
hardware and software, which means that the architecture
must support redundant components, both in the software and
in the hardware.

• Testability. Testability involves the ability to test and debug
the parts of the system individually and/or as a group, the
ability to extract test data from the system and the ability to
add data measurement points when needed, but also the ease
by which these things can be done.

The objective is to identify the best possible candidate using the
proposed method, which recommend a candidate based on quality
attributes.

3.2 Step 2: Create Framework
Using AHP [21][22] the 13 participants each complete a question-
naire to create an individual FAS, FQA. These are then synthesized
into a unified FAS and FQA by taking the median values of all of
the individual dittos. These are presented in Table 17 and Table 18
respectively.
Although the values are created using subjective assessments of
the qualities of software architecture candidates, it is our belief that
the subjective judgements of a set of professional software devel-
opers is an accurate representation of the actual qualities that said
architecture candidates have a potential for exhibiting.
Using these two tables and the process described in Section 2.2.3,
the FQAr is created as presented in Table 19. This is the table that
is used in later stages.
Furthermore, a variance vector set FVC is created according to
Section 2.2.4, presented in Table 20.

3.3 Step 3: Prioritize Quality Attributes
Next, the participants prioritize the quality attributes for the prod-
uct to build. The resulting vectors are synthesized into the PQA-
vector introduced in Section 2.3. The PQA is presented in

Table 21. This vector is created using the same multi-criteria deci-
sion process as was used to create the FQA and FAS.

3.4 Step 4: Suggest Architecture Candidate
Using the formula in Section 2.4, a value for each architecture can-
didate is obtained as presented in Table 22. The architecture candi-
date named Architecture B has the highest value, and is hence
identified as the architecture candidate upon which to base the
product. That Architecture B “wins” is not surprising as it is con-
sistently, with one exception, better than all of the other architec-
tures, as can be seen in the FQAr (Table 19).

3.5 Step 5: Determine Uncertainty
The variance is calculated according to Section 2.5 (the values are
presented in Table 22), and is found to be rather low, which

Table 17: FAS from NDC

Arch. A Arch. B Arch. C

Cost 0.248 0.120 0.315

Functional Flexibility 0.270 0.286 0.253

Performance Flexibility 0.205 0.286 0.162

Security Flexibility 0.099 0.135 0.097

Testability 0.177 0.173 0.173

Table 18: FQA from NDC

Arch. A Arch. B Arch. C

Cost 0.143 0.429 0.429

Functional Flexibility 0.160 0.431 0.408

Performance Flexibility 0.155 0.689 0.155

Security Flexibility 0.267 0.589 0.144

Testability 0.212 0.345 0.443

Table 19. FQAr from NDC

Arc. A Arch. B Arch.
C

Cost 0,190 0,365 0,445

Functional Flexibility 0,177 0,477 0,347

Performance Flexibility 0,164 0,649 0,187

Security Flexibility 0,217 0,582 0,201

Testability 0,205 0,421 0,374

Table 20. FVC from NDC

Arch.
A Arch. B Arch.

C

Cost 0,0070 0,0093 0,0091

Functional Flexibility 0,0029 0,0090 0,0106

Performance Flexibility 0,0022 0,0078 0,0058

Security Flexibility 0,0049 0,0066 0,0095

Testability 0,0028 0,0132 0,0121

Table 21: PQA from NDC

Quality Attribute Priority

Cost 0.246

Functional Flexibility 0.324

Performance Flexibility 0.145

Security Flexibility 0.104

Testability 0.181

Table 22: Match of Architectures and
Priorities of Quality Attributes

Value Variance

Architecture A 0.187 0.000919
Architecture B 0.475 0.00218
Architecture C 0.338 0.00229

increase the confidence in that the architecture candidates and
quality attributes are reasonably well understood.

3.6 Step 6: Consensus Discussion
During the consensus discussion, the individual views for each of
the architectures and quality attributes were presented, and a total
of 20 issues for discussions where there was a large spread among
the answers was discussed. Some of these issues triggered a deeper
discussion, whereas others rendered a simple comment and noth-
ing more.
All of the participants in the study also participated during the con-
sensus discussion meeting. Moreover, all persons actively took
part in the discussions. The discussions were such that they
allowed the younger participants to learn from the older and, to
some extent, vice versa. The discussion of some issues led to very
specific questions directed to the software and hardware develop-
ers among the participants. Several issues were also noted where it
was decided to conduct further investigations.
Half of the 20 issues for discussions had been identified using a
simple formula measuring the spread among the answers. These
issues rendered more discussions than the remaining that had been
identified by examining graphs of all participants’ answers. The
reason for this is simple: for the first 10 issues (identified through
the formula) there was a significant spread among the answers,
requiring longer discussions before a consensus could be reached.
For the remaining 10 issues there was usually only one or two per-
sons that had an opinion that differed from the majority, often ren-
dering a mere comment from the participants with a different
opinion.
One surprise was that Architecture C scored so well compared to
the others. This led to some discussions on the merits of this archi-
tecture candidate and the possibilities of combining parts of this
candidate with Architecture B.
An interview conducted with the participants after this consensus
discussion meeting gave that their confidence in that the correct
decision is taken increased as a consequence of the meeting. The
general view was that the method helped focusing the discussions
onto the areas where most needed, which made for an efficient use
of the meeting time.

3.7 Summary
The case study presented above is a abbreviated version of a study
conducted using the method in this paper (described in further
detail in [26]). This experiment is conducted together with an
industry partner, and in the context of a design decision they are
facing within this company. The data presented above is thus real,
live data.
The cost of applying the method is relatively low: completing the
questionnaires to create the individual frameworks took, in the
case above, about one hour per participant and the consensus dis-
cussion took another three hours, totalling four hours per partici-
pant.
The participants were pleased with the method. Even if it would
have been even more useful with more concrete architecture candi-
dates and quality attributes, it was still considered useful as the
amount of uncertainty reflects the confusion generally present at
early stages of a project. 75% were willing to try the method again
in a later stage of the project, when the architecture candidates
were clearer and the quality requirements more well defined.

4. DISCUSSION AND EXTENSIONS
A key element of the method in this paper is the framework, as the
method depends on whether it is at all possible to create this frame-

work. We have conducted an experiment where a framework for a
particular set of software architectures and a particular set of qual-
ity attributes is used [25]. In this experiment we use five of the
architecture patterns in Buschmann et al. 1996 [5] and the quality
attributes in ISO 9126 [9], together with the AHP method [21].

Other ways to use the created framework include using it to study
similarities and differences between different candidates, identify
strengths and weaknesses of different candidates, to apply the
framework in the context of assessment and evaluation of candi-
dates, and to use the framework in software evolution.
We also intend to continue studying the consensus building aspects
of the method. Specifically, the way the method helps focusing dis-
cussions to those issues where the participants have disagreements,
and the way this allows for knowledge transfer. We would like to
study whether this can be useful to train new software developers
in assessing different architecture candidates.

5. SUMMARY AND CONCLUSIONS
In this paper we present a method to increase the understanding of
the benefits and liabilities of different software architectures with
respect to quality attributes. Moreover, the method can be used to
indicate which of the architecture candidates that best suits the
quality requirements of a given software system. This can then be
used to hold focused discussions on areas where there are disagree-
ments to increase the confidence that the correct decision is taken.

The method takes as input a set of quality requirements for a soft-
ware system, and a set of architecture candidates. During the pro-
cess two sets of vectors, containing (a) a comparison of different
architecture candidates with respect to different quality attributes,
and (b) a comparison of different quality attributes with respect to
different architecture candidates, are created and further refined.
The use of the method produces a list of values for the different
candidate architecture candidates, of which the one obtaining the
highest value indicates the most suitable for the system to con-
struct.
The sets of vectors and the recommended architecture is used as
input to a consensus discussion, during which issues where the
participants disagree with each other are discussed to further
understand the reasons for this disagreement. The purpose of this
discussion meeting is to further increase the understanding of the
architecture candidates and quality attributes, identify where fur-
ther studies are necessary and to allow the software developers to
learn from each other.
The method, and our use of AHP to obtain the initial values, is a
way to systematically quantify the experience of the developers, as
it is the subjective judgements of the developers that are asked for
in step 2 (create method framework) and 3 (prioritize quality
attributes) of the method. Two of the major benefits of the method
is that it forces developers to systematically consider all possible
combinations and that it clearly indicates where the developers are
disagreeing. These disagreements will lead to focused discussions
and, eventually, a better understanding of the problem and hope-
fully an agreement among the developers.
To summarise, the proposed method enables software designers to
take into account relevant quality attributes for a system and evalu-
ate these against all software architecture candidates for the sys-
tem. The architecture candidate recommended by the method is the
one that, according to the developers, best meet the quality
attribute requirements for the system. This can then either be used
to actually create the software system accordingly, or by directing
evolution work to aspire towards the nominated architecture, in
order to work against software aging.

References
[1] D.R. Anderson, D.J. Sweeney, T.A. Williams, “An

Introduction to Management Science: Quantitative
Approaches to Decision Making”, South Western College
Publishing, Cincinnati Ohio, 2000.

[2] L. Bass, P. Clements, R. Kazman, “Software Architecture in
Practice”, Addison-Wesley Publishing Co., Reading MA,
1998.

[3] PO Bengtsson, “Architecture-Level Modifiability Analysis”,
Ph.D. Thesis, Blekinge Institute of Technology, Dissertation
Series No 2002-2, 2002.

[4] J. Bosch, “Design & Use of Software Architectures - Adopting
and Evolving a Product Line Approach“, Addison-Wesley,
Harlow UK, 2000.

[5] Buschmann, F., Jäkel, C., Meunier, R., Rohnert, H., Stahl, M.,
“Pattern-Oriented Software Architecture - A System of
Patterns“, John Wiley & Sons, Chichester UK, 1996.

[6] L. Chung, B.A. Nixon, E. Yu, J. Mylopoluos, “Non-Functional
Requirements in Software Engineering”, Kluwer Academic
Publishers, Dordrecht, the Netherlands, 2000.

[7] P. Clements, R. Kazman, M. Klein, “Evaluating Software
Architectures - Methods and Case Studies”, Addison-Wesley,
Boston MA, 2002.

[8] C. Hofmeister, R. Nord, D. Soni, “Applied Software
Architecture”, Addison-Wesley, Reading MA., 2000.

[9] “Software Qualities”, ISO/IEC FDIS 9126-1:2000(E).
[10] I. Jacobson, G. Booch, J. Rumbaugh, “The Unified Software

Development Process”, Addison-Wesley, Reading MA, 1999.
[11] E. Johansson, M. Höst, A. Wesslén, L. Bratthall, “The

Importance of Quality Requirements in Software Platform
Development - A Survey”, in Proceedings of HICSS-34, Maui
Hawaii, January 2001.

[12] E. Johansson, M. Höst, “Tracking Degradation in Software
Product Lines through Measurement of Design Rule
Violations”, to appear in Proceedings of the 14th
International Conference on Software Engineering and
Knowledge Engineering (SEKE), Italy, July 2002.

[13] J. Karlsson and K. Ryan, “A Cost-Value Approach for
Prioritizing Requirements”, in IEEE Software 14 (5):67–74,
1997.

[14] J. Karlsson, C. Wohlin and B. Regnell, “An Evaluation of
Methods for Prioritizing Software Requirements”, in
Information and Software Technology, 39(14-15):938-947,
1998.

[15] R. Kazman, M. Barbacci, M. Klein, S. J. Carrihe, S.G.
Woods, “Experiences with performing Architecture Tradeoff
Analysis”, in Proceedings of ICSE’99, Los Angeles CA., pp.
54-63, May 1999.

[16] R. Kazman, J. Asundi, M. Klein, “Quantifying the Costs and
Benefits of Architectural Decisions”, Proceedings of the 23rd
International Conference on Software Engineering (ICSE 23),
Toronto, Canada, pp. 297-306, May 2001.

[17] G. Kotonya, I. Sommerville, “Requirements Engineering”,
John Wiley & Sons, Chichester UK, 1998.

[18] M. Lindvall, R.T. Tvedt, P. Costa, “An Empirically-Based
Process for Software Architecture Evaluation”, in Empirical
Software Engineering, 8(1):83-108, 2003.

[19] M. Morisio, I. Stamelos, A. Tsoukiàs, “A New Method to
Evaluate Software Artifacts Against Predefined Profiles”, in
Proceedings of the 14th International Conference on Software
Engineering and Knowledge Engineering (SEKE 2002),
ACM Press, New York NY, pp. 811-818, 2002.

[20] D.L. Parnas, “Software Aging”, in Proceedings of the 16th
International Conference on Software Engineering, IEEE
Computer Society Press, Los Alamitos CA, pp. 279-287,
1994.

[21] T. L. Saaty, “The Analytic Hierarchy Process”, McGraw
Hill, Inc., New York NY, 1980.

[22] T.L. Saaty, L.G. Vargas, “Models, Methods, Concepts &
Applications of the Analytic Hierarchy Process”, Kluwer
Academic Publishers, Dordrecht, the Netherlands, 2001.

[23] M. Shepperd, S. Barker, M. Aylett, “The Analytic Hierarchy
Process and almost Dataless Prediction”, in Project Control
for Software Quality - Proceedings of ESCOM-SCOPE 99,
R.J. Kusters, A. Cowderoy, F.J. Heemstra, E.P.W.M. van
Weenendaal (eds), Shaker Publishing BV, Maastricht the
Netherlands, 1999.

[24] M. Svahnberg, C. Wohlin, “Consensus Building when
Comparing Software Architectures”, in Proceedings of the
4th International Conference on Product Focused Software
Process Improvement (PROFES 2002), Lecture Notes in
Computer Science (LNCS 2559), Springer Verlag, Berlin
Germany,, 2002.

[25] M. Svahnberg, C. Wohlin, “Evaluation of Software Quality
Aspects for Architectural Structures using the Analythical
Hierarchy Process”, submitted (can be obtained from the
authors), 2003.

[26] M. Svahnberg, “An Industrial Study on Building Consensus
around Software Architectures and Quality Attributes”,
submitted (can be obtained from the authors), 2003.

