Reliability Certification of Software Components

Claes Wohlin and Bjorn Regnell
Department of Communication Systems
Lund Institute of Technology, Lund University
Box 118, SE-221 00 Lund, Sweden
E-mail: (claesw, bjornr)@tts.lIth.se

Abstract

Reuse is pin-pointed as a key factor to improve
productivity and reliability of software systems.
Verification and validation of software components and the
resulting system is important for reuse to be beneficial on a
broad industrial basis. This paper suggests a modelling
approach which is suitable for reliability certification of
modular systems. It discusses a general reliability
certification procedure and provides guidelines and
opportunities for how to certify software components and
also presents some alternatives for certification of modular
systems. We conclude that to create reliable systems, we
must start certifying the individual constituents of the
systems.

1: Introduction

Reuse, modularization, and certification of software
are three areas given a lot of attention in the software
engineering community today [1]. This paper focuses on
the importance of combining these three areas. Object-
oriented techniques, or at least modular techniques, are
pin-pointed as being suitable for reuse, but it must be
remembered that components often are not reused if their
reliability cannot be guaranteed. Therefore it is essential to
realize that reliability certification is a must when
discussing reuse. We use the term certification to
distinguish reliability certification from verification and
validation in general.

The term component is used throughout this paper as
a generic entity which can be certified and reused.
Components to be retrieved from a repository must have a
quality stamp in terms of what level of reliability can be
expected from them as they are put into a system. The

reliability must reflect the intended usage of the
component, i.e. a component may be viewed as being
reliable for one user and unreliable for another depending
on the intended usage of the component.

This paper focuses on the certification of software
reliability for a modular system. Reuse in general and
object orientation in particular are discussed frequently,
but few of these discussions highlight the problem of
actually assigning a reliability measure to the components
being put into the repository. This paper focuses on
techniques available for certifying both components as
well as systems. The certification process includes two
major activities: usage specification (consisting of a usage
model and usage profiles) and certification procedure
using a reliability model.

This paper provides insight into the reliability
certification domain to support others wishing to evaluate
and validate the models and methods presented in this
paper. At this stage of the research, no validation project
has been run, but we hope that through presenting the
ideas, we can encourage others to experiment and thus
evaluate and validate the proposals. The main objective is
to structure the area and highlight some of the problems
related to certification of software components.

Section 2 gives an introduction to usage-based testing
in general, and Section 3 provides a structuring of the area
in terms of key concepts and their relations. In Section 4,
some possible ways of addressing component and system
certification are presented. The section includes a
classification of components and identifies different ways
to certify a system. Section 5 outlines some further
research needed, and finally some conclusions are
presented in Section 6.

2: Usage-Based Testing

No specific test methods are prescribed by current
object-oriented/based development methods. The problem
domain of testing object-oriented systems [2] has just
recently become of major interest, as it has been realized
that object orientation in itself is not sufficient to create
high quality software [3]. Two different major alternatives
exist: black-box testing and white-box testing. Black-box
testing techniques take an external view of the system, and
test cases are generated without knowledge of the interior
of the system. White-box testing techniques aim at
covering paths in the code or all lines in the code or
maximising some other coverage measure. The main
objective of most testing techniques is to validate that the
system fulfills the requirements, the focus is mostly on
functional requirements. But, test cases can also address
quality issues: for example, they can either be derived to
locate as many faults as possible or to certify the reliability
level of the software.

Reliability certification of software focuses on
detecting the faults that cause the most frequent failures,
hence maximising the growth in reliability. The focus in
this paper is on black box testing and, in particular, on
statistical usage-based testing, which can be used to certify
a particular reliability level and, of course, to validate the
functional requirements as well.

The ability to certify software during testing is based
on a user-oriented approach. This requires a model of the
anticipated usage of the software and quantification of the
expected usage as the software is released. Several
approaches have been investigated and used in this area,
for example, Musa advocates operational profile testing
[4], several authors discuss random testing based on the
operational profile as part of Cleanroom Software
Engineering [5, 6, 7]; and Runeson and Wohlin present an
approach with user-state dependent random testing based
on the operational profile [8, 9]. Musa reports on
considerable gains in reducing project cost by using an
operational profile to control testing [4] and Mills et. al.
also provide figures indicating major improvements [5].

A usage model for a system should in some way
include modularization. The model described by Runeson
and Wohlin [9] is introduced to cope with a large
modularized system, which in particular means it is
suitable for components and reuse. Some preliminary
findings concerning certification of software components
are discussed by Wohlin and Runeson [10]. They are also
included in [1], where in particular the mapping between
system components and usage specification parts is
identified as a key aspect to allow for component
certification. This finding is the key to successful
certification of systems, see Section 4.2. Subsequently the

term certification component is used to denote the entity
to be certified, which can be either an object in a system
(sub-system, class, a collection of classes) or an entire
system.

3: Reliability Requirements Specification with
Usage Profiles

3.1: Introduction

Non-functional requirements are an essential part of
requirements specifications. In particular, the reliability
requirements are often regarded as one of the most
important non-functional requirements. These cannot be
formulated as a single figure (e.g. probability for failure or
mean time between failures), since more information is
needed. It is necessary to take the anticipated usage into
account as the reliability of the system is dependent on the
usage; the usage for which the requirement is valid must be
stated at the time of formulating the requirements of the
system.

In the requirements specification, it should be stated
how the requirement is to be validated during system
testing. This must be written clearly in the specification to
avoid misunderstandings when the reliability requirements
are validated. Usage-based testing with reliability
certification as a means for validating reliability
requirements is a quite new technique and it may not be
accepted by all suppliers of software systems unless
clearly stated in the requirements specification.
Furthermore, usage-based testing allows for functional
validation and reliability certification at the same time.

3.2: Concepts in usage-based testing

A system consists of a number of services provided to
the system users. These services are implemented by
components. To enable certification of these components a
framework for specifying usage and for enabling reliability
certification of components that are parts of a system, as
well as certification of an entire system, is needed. In
Figure 1 parts of the framework are introduced. Figure 1
illustrates the relations between target system and
environment concepts. These concepts are the basis for
creating a specification of the usage of the certification
component and also for quantifying the anticipated usage.
The specification is further discussed below and shown in
Figure 2.

The concepts in Figure 1 can be defined as follows.
The software to be certified is referred to as the
certification component. A certification component has a
reliability, which is the probability that the component
works as intended for a specified time and specified

Reliability

T has

Certification

input-to output-from
p/, Component P
Target System
- — = = — = — Stimuli F — — — — +se — — — Response [— — — -
Environment /
generates User receives
articipate-in
Service described by User refined into Sub-behaviour
Usage Behaviour

Figure 1. Certification concepts and their relationships.

environment. The certification component is used by one
or many users, which can be either human users or other
systems. The communication between the user in the
environment and the target system is made through
stimuli generated by the user and responses sent by the
system. The wuser of the certification component
participates in service usage, which is described by the
behaviour of the user when using a specific service. The
behaviour can, when needed, be refined into a sub-
behaviour.

To enable certification, the environment must be
modelled to allow for generation of test cases, which
resemble the anticipated behaviour in the operational
phase. Thus, modelling concepts capturing the
environment are needed. Depending on the type of testing
being applied, different test models have to be derived.
The focus here is solely on usage-based testing, which
leads to the following key definitions:

Usage

/ Specification \Specification

e \

e The test model is a usage specification, although
other aspects, such as criticality, may be of interest,
see Figure 2.

e The usage specification consists of a usage model,
which describes the possible behaviour of the users,
and the usage profile, which quantifies the actual
usage in terms of the probability of different user
behaviour.

e The usage model is described through user states and
transitions between user states.

e The usage profile is divided into a hierarchical pro-
file, which describes the probabilities for choosing
one specific user in the environment, and the individ-
ual profile, which models the behaviour of a single
user, while using the available services.

The usage specification may in part be input to the
development as well, although the usage profile is mainly
aimed at the testing (usage-based testing).

Criticality

Usage Usage
Model Profile
States Transitions Hierarchical Individual
Profile Profile

Figure 2. The test model and its usage-oriented modelling concepts.

Failure number
A

Reject

Continue

Accept

| .

L

Normalized failure time

Figure 3. Reliability demonstration chart.

3.3: State hierarchy model

By combining the concepts in Figure 1 and Figure 2, it
is possible to find a suitable mapping between them. It is
also suitable to introduce some new modelling concepts,
which allow for a grouping of the users, based on their
usage models and usage profiles. A user type is defined as
the collection of users having the same possible behaviour
(normally equivalent to users having the same goal), i.e.,
they have exactly the same individual usage models. A
user subtype is a further division of the users into a group
where all users also have the same usage profile, hence
having a similar statistical behaviour.

The usage specification and its model and profile
allows for generation of test cases, which resemble the
anticipated usage in the operational phase. Thus, a model
is needed that is easy to run through, and to generate the
next event to be put into the test script. As stated in Section
2, some different approaches exist. The focus here is on the
state hierarchy model. This model can be divided into two
parts, one hierarchical model part and one service model
part. The hierarchy is introduced to limit the size of the
model, since a non-hierarchical model would be
unmanageable for large systems [8]. The hierarchical part
allows us to find the next service part in which the next
event will occur. The service part thus models, for
example, a specific service available to a user.

The hierarchical model part is of particular interest in
the context of reusing software components, since it allows
for a mapping between model parts and system
components. This is a key issue to enable reliability
certification systems in an effective way.

3.4: Reliability certification

Certification, in general, does not assume that faults
have been corrected; it is only proven that a specific
reliability level has been reached. This is not the normal
case for software, where a correction of a fault means that
the fault has disappeared once and for all. This is not

completely true due to erroneous corrections, but it is at
least the objective. Thus, models taking reliability growth
into account are needed, and the model to use in
certification should be included in the requirements
specification. These reliability models are referred to as
software reliability growth models [11, 12], and they are
based on a number of assumptions (more or less realistic).
Another opportunity is to take a non-correction procedure
and adapt it to allow for fault correction, for example, the
reliability demonstration chart [11]. The chart is illustrated
in Figure 3.

The failure number indicates simply the number of
failures found and the normalized failure time is equal to
the actual time between failures and the required time
between failures. For each failure that occurs, a new point
is added in the diagram (start at the origin) and a decision
is taken whether to reject or accept the software or to
continue testing. Based on the definition above of
normalized failure time, it is obvious that a failure time
shorter than the required, results in a normalized failure
time less than one. This means that the plot comes closer to
the reject area, which seems reasonable as the software is
worse than required. In Figure 3, the software can be
accepted after 7 failures have occurred. The two lines in
the figure are derived based on the requirement and the
confidence in taking the appropriate decision [11].

4: Usage Based Testing for Reliability Certifi-
cation

This section provides the main contribution of this
paper, through the certification process, the division of
components into classes for certification and by
identification of three different ways for certifying
software systems.

The objective here is to discuss and illustrate how the
modelling approach, see Section 3.3, can be used to enable
usage-oriented verification, validation and certification of
components. Furthermore, the objective is to describe how
components can be stored together with information about

Requirements analysis

Investigate Create
anticipated usage

usage specificatioy
Cer’“fy Collect
component/ [¢ failure
system data

Generate

test cases }
Test

Evaluate

outcome 4—'

of test

Figure 4. The certification process

their reliability for different usage profiles, and also how
software certification can be done based on information
about the components and their usage models.

4.1: Certification process

The functional requirements implemented in the

certification component are validated during usage-based
testing in the same way as in any other testing technique.
Thus, the functional requirements form the basis for
determining whether a failure has occurred or not.
Obtaining a reliability measure requires a certification
process. This process can be divided into a number of
distinct steps, as shown in Figure 4.

The steps of the certification process can briefly be

described as follows.

1.

Investigate anticipated usage

The anticipated usage is investigated through usage
analysis of similar systems in the field and surveys of
the market. The objective should not necessarily be to
find very accurate probabilities, but to identify how
often different users use a certain service relative to
another service. This should be performed as part of
requirements analysis.

Create usage specification of “certification compo-
nent”

The usage specification is created through a number
of steps. The services of the certification component
are first identified and its externally visible states and
transitions are determined. The users are then studied
and divided into types and subtypes. Based on this
information, the hierarchical model is derived. The
usage profile is derived from the investigation of the
anticipated usage. Finally, the usage specification is
analysed to ensure that it is a valid description of the
anticipated usage of the certification component. The
usage specification, or at least the information to be
included in it, should be determined in the require-

ments specification phase. The usage model may be
derived in several steps when an incremental develop-
ment approach is used. This is the approach advo-
cated in Cleanroom [5].

Generate test cases

The usage specification is run through using random
numbers. To generate test cases, the tester acts as the
system and provides the expected responses of the
certification component using the requirements speci-
fication as a basis. The stimuli generated from the
usage specification and the responses from the tester
are stored on a test file, i.e. the tester acts as an oracle
for the test cases during the generation. The test gen-
eration procedure is further described by Wesslén and
Wohlin in [13]. It should be noted that the test cases
may be generated in parallel with the software devel-
opment as the answers provided by the tester is based
on the expected answer from the system, not the
actual implementation. Further research in this area
includes work on automatic checking versus the
requirements specification. Use cases or scenarios
would be particularly interesting since they have the
same view as the statistical testing, i.e. the user per-
spective.

Test

The tests are performed automatically by running the
test files against the certification component. The test
files contain both stimuli, expected responses, and a
failure handling routine. This means that the test file
can be run against the certification component as long
as the component responds correctly, i.e. in corre-
spondence with the expected response, no action has
to be taken. The results from the test are stored in a
test log.

Evaluate outcome of test

The evaluation means examining the test log. It is
essential to determine the cause of any unexpected

Component Usage Model

Certification

Usage profile

Reliability

Figure 5. Certification of software components.

behaviour. A discrepancy is not necessarily a fault in
the program, it may be the result of an error done by
the tester when generating the test case. A test oracle
is used for evaluation of the test cases, see item 3.

Collect failure data

After the examination of the test log, it is possible to
collect failure data in terms of time between failures.
To enable this, it is necessary to log the execution
time, or any other suitable time measure for keeping
track of the time between failure occurrences, when
the unexpected behaviour occurred.

Certify component

Certification of the component is made by applying
one or several of the models discussed for reliability
certification. Thus, components can be reused on the
basis of their quantified reliability level.

The above certification process is subsequently
discussed for components and systems separately. The
intention is in particular to try to define a number of
different types of components to certify and also to look at
different alternatives when certifying software systems.

4.2: Reliability certification of components and systems

4.2.1: Component certification. The derivation of a real-
istic usage model and corresponding profiles is the key
issue in enabling certification. For a system, the users are
mostly well-known, but it is not obvious when looking at

components as parts of a system. On the other hand, the
usage model is bound to be smaller for a smaller part of the
system, hence making it easier. Thus, the important ques-
tion is: How can a usage specification be derived for com-
ponents?

It is reasonable to try to have a correspondence
between components in the system and the service usage
model. Thus, a service provided to a user should be
packaged in a component and a component should be
modelled as a usage model part. This way, it is easier to
reuse components and at the same time reuse usage model
parts. This is one of the main benefits of the state hierarchy
model, i.e. its support for reuse. Thus, to each component a
usage model should be connected and by adding a specific
usage profile, it is possible to certify the reliability of the
component for this particular profile, see Figure 5.

The components should then be stored for possible
future reuse. They should be stored and maintained
together with their usage model, which may be a part of a
larger usage model, and the usage profiles for which it has
been certified. To each profile, a specific reliability is
connected, since the validity of the reliability measure is
closely related to the usage profile, see Figure 6.

In a reuse situation, it is important to examine the
profiles for which the component has been certified. If the
expected profile is different from the ones under which it
has been certified, it is necessary to consider how far the
new profile is from the ones used for certification.
Distance measures between profiles are an important area
of research. It is not reasonable to expect certification of

Usage R

|7 profile 1 Reliability 1
| Usage Usage R

Component model profile 2 Reliability 2
Usage -

profile 3 Reliability 3

Figure 6. A component and information to be stored with it.

components for all possible usage scenarios. Instead, the
focus should be on the expected profiles, and if the
intention is to reuse the component for a different profile, it
is necessary to certify it for the new profile and store the
new information together with the component, see Figure
6. Independent of the ability to predict future usage
profiles, it is important to at least provide certification
information for the profiles for which it has been certified.
In this way, the potential reuser at least knows for which
profiles the component has been certified, and of course
also for which profiles the component provider is unable to
state any reliability information. Consolidating all
information about a component is standard procedure in
configuration management, but it is worth emphasizing
from a reliability certification perspective.

The problem, mentioned briefly above, concerning
determining a suitable usage model and profiles for
components can partly be overcome by identifying three
specific types of components. The three types are:

1. Random components

A random type component is characterized by the
usage of a number of different users, and these users,
together, seem to generate an almost random profile.
This is a simplification, but if it is judged that it is dif-
ficult to determine the usage profile and the compo-
nent is used by a number of users, then a random
assumption may be a good approximation. It is not
possible to state exactly what is a suitable criterion for
random; it has to be based on experience.

2. External component

An external component is related to the interface of
the system. The usage model and profile for this type

of component are assumed to be derivable from the
externally observable usage of the system, i.e. the sys-
tem users should be examined.

3. Thread component

A service is often implemented as a sequence of
actions relating to different components (sometimes
referred to as use cases or scenarios). This fact is used
to define a thread component as a component partici-
pating in a limited number of services. Thus, the
usage model and profile should be derived by exam-
ining how services map to the thread component in
the design and implementation models.

If it is not possible to determine which of the above
types a component belongs to. The profile has to be
derived based on explicit knowledge of the usage of the
components. The objective is to formulate as good model
and profile as possible.

After having classified the components, and derived
the usage profile, the system certification method in
Section 4.1 is used.

4.2.2: Certify or derive system reliability. Another
essential question for the systems is: How can the system
reliability be determined based on knowledge about the
components? Three major approaches have been identi-
fied, see also Figure 7. These approaches take advantage of
the opportunities to certify components, and in particular
the different opportunities available with the identification
of the different component types, which provide some
insight into how to certify components. One approach is to
derive the usage model from scratch, and two different
approaches can be identified for certifying the system,

Usage Usage Component
Component model profile reliability
Approach 3:
Compose Approach 2: Derive
system Compose system system
usage model reliability
Usage
System moo?el Certification)—p| System reliability
Approach 1: ;
Develop from Usage profile
scratch

Figure 7. System certification alternatives.

when some knowledge about the components in the system
is available. The three approaches are, see also Figure 7:

1. Develop from scratch

The usage model of the system can be derived from
scratch independent of any certified component. This
approach is the same as described when certifying a
single component, i.e. the system is viewed as the
component. This is always possible, but it may be
very costly to derive a new usage model and re-certify
the complete system just because one new service has
been added to the system. For large software systems,
this is certainly not a useful approach. If this approach
is used, then any usage modelling technique can be
applied as long as the model is possible to handle.

2. Compose system usage model

Instead of deriving the usage model from scratch, it
should be possible to compose the usage model of the
system from the usage models of each component,
similar to the way a system is composed out of its
components. This approach requires a correspond-
ence between system components and usage model
parts. The approach still requires re-testing to certify
the system, but at least it is not necessary to derive a
completely new usage model.

3. Derive system reliability

This is the preferred approach, i.e. to be able to derive
system reliability from component reliability in a sim-
ilar manner as it is done in hardware. The accuracy of
the certification will, of course, suffer, but the cost for
re-testing large systems means that this approach
should be further developed. Some work has been
done in the area [14], but more research is needed, see
Section 5. The objective of the classification of com-
ponents in Section 4.2.1 is to provide support regard-
ing component certification, which is the basis for

deriving system reliability.

The three alternative ways of deriving system
reliability are only outlined here. Further research is
needed to both propose and evaluate the different
alternatives. In particular, some empirical studies are
needed to evaluate the third alternative, and address the
challenge of handling dependencies between components.

5: Further Research

The usage-based testing approach raises a number of
questions. It is not always easy to model usage and find the
correct profile. Thus, the obvious questions is: How
critical is the model and profile? No general answer can, of
course, be given, but by trying, a better understanding of
the product and its potential use is gained. Therefore, it
seems reasonable that it is always better to try to quantify
the usage than ignore it. As stated in Section 2, positive
figures concerning its cost-effectiveness have been
published.

An important issue, which must be further researched,
is the sensitivity of the reliability estimate based on a
changing profile. Sensitivity analysis is discussed by, for
example, Chen et. al. [15]. The problem with re-
certification when the usage profile changes is also
discussed by Wohlin [16].

An area for further research is methods for derivation
of system reliability based on knowledge of the
components. This is particularly important for a large
evolving system, where it is infeasible to re-certify the
complete system as new services are added. This area
includes the need for case studies to evaluate the
opportunities to derive system reliability from the
components of the system.

Another interesting area of research involves
consideration of systems which are truly object-oriented.
This means that objects are specialized and behaviour is
inherited. A major certification problem may arise: is it

Usage
model

Specialization

of usage model
Specialization
of super-class

Usage
sub-model

Specialization
of usage model

Y

Usage
sub-model

Figure 8. Specialization of classes in object orientation and their usage models.

possible to certify a super-class and what is meant by
certification when the object is subclassed? Are we able to
subclass a usage model too? How does a reliability
measure of a super-class relate to the reliability of
subclasses? The problem is partly illustrated in Figure 8.

It is also important: to study different classes of faults.
Some fault classes may be more critical and it is possible
that the requirements specification states different
reliability requirements based on the fault class, hence
different fault classes may have to be certified separately.
A potential problem may be that if the faults are divided
into too many classes, too few failures will occur in each
class and we are unable to derive the reliability. Thus, there
is a trade-off between fault classes and the ability to
determine the reliability. This is an area for further study.

One area of particular interest for further work is of
course industrial application and empirical studies in the
area. The studies have to investigate both the classification
scheme of components (random, external and thread), and
the ability to certify a system based on component
reliability. Furthermore, empirical studies are needed to
evaluate how changes in the usage profile affects the
perceived reliability. Both experiments in a laboratory
environment and industrial case studies are needed to
facilitate the understanding of component reliability and its
relationship to system reliability

6: Conclusions

Testing of object-oriented systems has to be improved
[3], and we believe that the need includes verification and
validation of components. This statement can be enlarged
to incorporate methods for reliability certification, as this
is probably a prerequisite to enable reuse on a large
industrial scale. Companies cannot reuse software
components without knowing how reliable they are.

This paper provides some methods and guidelines for
suitable directions to support reuse of certified software
components. This is an important area of research and its
industrial relevance must be hard to question. The four
major contributions of the paper in this area are:

e astructure of terms in the area of certification of soft-
ware reliability and their relationship,

« the need to store the usage model and profile together
with the component,

e aclassification of components to simplify the deriva-
tion of a usage profile, and

e three ways of certifying software systems built from
components

This paper does not provide all the answers, but it
provides a starting point for further research and for
introducing the methods in an industrial setting to obtain
experiences from certification of software components and

systems.

Acknowledgement

We would like to thank Per Runeson and Anders
Wesslén, Department of Communication Systems, Lund
University for inspiring joint work in the area of usage
modelling and reliability certification. This work is partly
supported by National Board for Industrial and Technical
Development (NUTEK), Sweden, Project number: 1K1P-
97-09690. We would also like to thank the anonymous
referees for valuable comments. Finally, we would like to
express our gratitude to Dr. Sholom Cohen, SEI and Dr.
Kathy Yglesias, IBM for valuable input during the update
of the paper. In particular, we are grateful to Dr. Cohen for
helping us improving the English.

References

[1] E-A. Karlsson (editor), Software Reuse: A Holistic
Approach, Wiley, New York, 1995.

[21 R. V. Binder, “Testing Object-Oriented Software: A
Survey,” Software Testing Verification & Reliability, Vol. 6,
No. 3/4, 1996, pp. 125-252.

[3] R.V.Binder, “Trends in Testing Object-Oriented Software,”
IEEE Computer, October 1995, pp. 68-69.

[4] J. D. Musa, “Operational Profiles in Software Reliability
Engineering,” IEEE Software, March 1993, pp. 14-32.

[5] H. D. Mills, M. Dyer, and R. C. Linger, “Cleanroom
Software Engineering,” IEEE Software, September 1987,
pp. 19-24.

[6] R.H.Cobband H. D. Mills, “Engineering Software Under
Statistical Quality Control,” IEEE Software, November
1990, pp. 44-54.

[7]1 J. A. Whittaker and J. H. Poore, “Markov Analysis of
Software Specifications”, ACM Transactions on Software
Eng. Methodology, Vol. 2, January 1993, pp. 93-106.

[8] P. Runeson and C. Wohlin, “Usage Modelling: The Basis
for Statistical Quality Control,” Proc. 10th Annual Software
Reliability Symposium, 1992, pp. 77-84.

[91 P. Runeson and C. Wohlin, “Statistical Usage Testing for
Software Reliability Control,” Informatica, Vol. 19, No. 2,
1995, pp. 195-207.

[10] C. Wohlin and P. Runeson, P., “Certification of Software
Components,” Trans. on Software Engineering, Vol. 20, No.
6, 1994, pp. 494-499.

[11] J. D. Musa, A. lannino and K. Okumoto, Software
Reliability, Measurement, Prediction and Application,
McGraw-Hill, New York, 1987.

[12] M. Lyu, Handbook of Software Reliability Engineering,
McGraw-Hill, New York, 1996.

[13] A. Wesslén and C. Wohlin, “Modelling and Generation of
Software Usage,” Proc. 5th International Conference on
Software Quality, 1995, pp. 147-159.

[14] J. H. Poore, H. D. Mills and D. Mutchler,” Planning and
Certifying Software System Reliability,” IEEE Software,

[15]

[16]

January 1993, pp. 88-99.

M-H. Chen, A. P. Mathur and V. Rego, “A Case Study of
Reliability Estimates to Errors in the Operational Profile,”
Proc. 5th International Symposium on Software Reliability
Engineering, 1994, pp. 276-281.

C. Wohlin, “Re-Certification of Software Reliability
without Re-Testing,” in: M. Lee, B-Z Barta and P. Juliff,
ed., Software Quality and Productivity: Theory, Practice,
Education and Training, pp. 219-226, Chapman & Hall,
London, UK, 1995.

