
Supporting Strategic Decision-making for Selection of
Software Assets

Claes Wohlin1, Krzysztof Wnuk1, Darja Smite1, Ulrik Franke2, Deepika Badampudi1

and Antonio Cicchetti3

1Blekinge Institute of Technology

371 79 Karlskrona, Sweden
claes.wohlin@bth.se; darja.smite@bth.se; krzysztof.wnuk@bth.se;

deepika.badampudi@bth.se
2 Swedish Institute of Computer Science (SICS), Box 1263

164 29 Kista, Sweden
ulrik.franke@sics.se

3Mälardalen University, Box 883
721 23 Västerås, Sweden

antonio.cicchetti@mdh.se

Abstract. Companies developing software are constantly striving to gain or
keep their competitive advantage on the market. To do so, they should balance
what to develop themselves and what to get from elsewhere, which may be
software components or software services. These strategic decisions need to be
aligned with business objectives and the capabilities and constraints of possible
options. These sourcing options include: in-house, COTS, open source and
outsourcing. The objective of this paper is to present an approach to support
decision-makers in selecting appropriate types of origins in a specific case that
maximizes the benefits of the selected business strategy. The approach consists
of three descriptive models, as well as a decision process and a knowledge
repository. The three models are a decision model that comprises three
cornerstones (stakeholders, origins and criteria) and is based on a taxonomy for
formulating decision models in this context, and two supporting models
(property models and context models).

Component-based software engineering; service-oriented software engineering;
decision-making.

1 Introduction

In the advent of software development, companies developed their own operating
systems, proprietary programming languages and compilers (e.g. AXE10 developed
by Ericsson). Later, companies moved away from this approach to focus their
software development efforts on their core business (e.g. telecommunication systems

2 Wohlin et al.

and features). This maturing software business has spawned two significant trends:
specialization and commoditization [11]. Specialization became a direct result of
commoditization as companies discovered that to stay competitive they needed to
specialize and optimize the costs of developing the commodity parts of their products.
At the same time, the increasing popularity of Open Source Software (OSS)
accelerated the commoditization process and forced many software companies to look
for alternative or multiple revenue streams and new sources of novelty and value. As
a result, the primary focus is now on developing software that provides a competitive
advantage (e.g. killer apps).

Thus, it is very important for companies to decide what to develop themselves and
what to get from elsewhere. On the strategic (executive) level, the strategy of mergers
and acquisitions becomes a relevant option of obtaining software and organizations
that develop it [31]. However, acquisitions may not always be feasible or possible,
e.g. for open source communities that may not be “for sale”. Thus, decision-making
efficiency also becomes critical for software components that can be realized using
internal development resources (in-house), buying COTS, subcontracting or utilizing
OSS software. Each of these four sourcing alternatives provides different benefits and
consequences, and hence impacts or shapes the business models. For example,
obtaining OSS software is often related to joining and participating in a software
ecosystem [16] that entails changes in ways of working and potential challenges.
Moreover, the selection of one of the four strategies directs the company towards one
of the four business model archetypes: creator, distributor, lessor and broker [26]. For
many software companies, the time when they could only focus on being creators and
thus solving technical challenges is history.

Component-based software engineering has been an important area of research for
almost three decades [34] and [35]. As a complement to components, the concept of
service-oriented software engineering has emerged [14]. An attempt to bring the two
paradigms closer and to use them in a complementary way has been presented in [6].
Here, we use the term “software asset” to denote any type of software, including
components and services that can be used for achieving the business objective for a
specific system, product or service being developed. Software assets may be divided
into four main types when it comes to the source or origin of the asset (henceforth
denoted asset origin): in-house, COTS, open source and outsourcing. Within each of
these asset origins different assets may fulfill the identified needs, for example,
several different COTS may provide the same functionality to the user. In-house
refers to assets developed or reused internally within an organization. Thus, in-house
includes software having been developed within the same organization, independent
of location (e.g. sites in another country), subsidiaries or organizational structure (e.g.
different business area). The other three types of asset origins are external, and hence
outsourcing is here used as a sourcing option outside the organization that needs a
software asset [32].

A key decision to make is what sourcing strategy is the most optimal for an asset.
Should it be developed in-house or should we look elsewhere? To date, research has
focused on comparing just a few of these asset origins, in particular, in-house versus
COTS, and in-house versus outsourcing, and to the best of our knowledge no paper

Supporting Strategic Decision-making for Selection of Software Assets 3

has addressed all four asset origins [2]. To be able to support these types of decisions
in industry, a decision-making approach is outlined here that will form the basis for
further research on the topic. The approach consists of three types of descriptive
models: decision model, property model and context model, as well as a decision
process and a knowledge repository. The main focus here is to look at decision-
making between the four different types of asset origins (in-house, COTS, open
source and outsourcing), although the models and process described in the paper are
expected to be able to adapt to also selecting between different components or
services of the same type of asset origin. We do not focus here on mergers or
acquisitions as a sourcing strategy for software assets [31].

The remainder of the paper is outlined as follows. Section 2 presents related work
from general decision-making theory, decision-making related to different asset
origins, and a specific taxonomy intended to help formulating the three descriptive
models for the purpose of making the types of decisions discussed in this paper. In
Section 3, the proposed models are presented, and in particular their different parts are
discussed. Section 4 introduces the concept of an evidence-based knowledge
repository to support the decision-making process. A decision-making process
outlining how the three descriptive models can be used is presented in Section 5.
Section 6 provides a summary and pointers to further work.

2 Related work

2.1 Decision-making

Decision theory largely deals with actors making decisions (e.g. bring an umbrella
or not) in the face of uncertain events (e.g. rainfall or not), leading to different
outcomes (e.g. wet or dry) and pay-offs (e.g. dry and burdened by umbrella though
there is no rain). There are many textbook introductions to the subject, e.g. [28], as
well as extensive literature reviews on theories of decision-making under risk [33].

In the area of software engineering research, decision theory has been applied to
diverse problems such as evaluating COTS [21], determining optimal intervals for
testing and debugging [30], evaluating software designs [7] and assessing non-
functional requirements [13]. Decision theory is also one of the cornerstones in the
theory of value-based software engineering [4]. Empirical research includes studies
on how people make decisions about service level agreements [11] and [12].

The purpose of this paper is not to make a theoretical contribution to decision
theory in software engineering and software business, but rather to apply it to a
particular problem class: how to select an appropriate asset origin for a particular
piece of software (component or service). In so doing, we use decision theory
terminology and concepts to reason about the problem and present an approach that
will make it possible to reuse previous experience and published results alike to make
the best possible decision, given the knowledge available.

4 Wohlin et al.

2.2 Deciding on Origin

The research related to selecting between different software asset origins is quite
limited. In a recent systematic literature review [2], which is summarized here, no
papers addressing all four types of asset origins were identified. However, some
papers addressing two or in a few cases three origins were found.

The decision models for in-house vs. COTS are mainly based on optimization
models. The optimization models proposed in [9], [10], [17], [18], [27] and [34] help
to decide which components should be developed in-house and which should be
bought. Cost, delivery time, and reliability are the common objectives and constraints
considered in all the proposed optimization models. The optimization models either
consider single objective or multiple objectives in the decision model.

The objective in the optimization models proposed in [9], [10], [27] and [34] is to
minimize cost under reliability and delivery time constraints. The CODER framework
proposed in [9] consists of a decision model based on optimization and accepts UML
notations as an input. In [31] and [34], the authors propose an architecture
optimization approach based on a swarm intelligence algorithm. The CODER
framework [9] is extended in [26] and [27], allowing decision-making as early as
requirements are available. Similarly, a general non-linear optimization model is
proposed in [10] for the same objective and constraints i.e. minimizing cost under
reliability and time constraints.

Multi-objective optimization models have been proposed in [17] and [18]. A
decision model for fault-tolerant systems is proposed in [15] and [17] with two
objectives – to maximize reliability and minimize cost under a time constraint. In
addition, coupling and cohesion have been considered in the decision model proposed
in [18]. The objectives in [18] are to maximize intra-modular coupling density and
functionality under time, cost and reliability constraints.

Two papers focus on deciding between in-house and outsourcing [19] and [20]
were identified. The model in [19] provides tool support for requirements clustering
to find a cohesive group of requirements using a graph-based model. In [20], the
authors propose a decision model using decision tables. The input is the knowledge
specificity (business, functional and technical), and interdependencies (priority
between software components and communication intensity among developers).

2.3 GRADE Taxonomy

The work presented in this paper is grounded in the GRADE taxonomy [22] and
[24]. The GRADE taxonomy summarizes the relevant concepts and definitions for
building models related to decision-making and supporting decision processes. On the
highest level, the GRADE taxonomy combines five fundamental concepts of
decision-making for software intensive systems: Goals, Roles, Assets, Decision and
Environment (GRADE). These five fundamental concepts can be used as building
blocks for creating models supporting decision-making.

Supporting Strategic Decision-making for Selection of Software Assets 5

Goals represent the starting point for a decision. They represent the internal

business goals and customer goals, and have a broad impact on the entire product or
even organization. The goals form an important input to the decision-making.

Fig. 1. Mapping of GRADE to concepts in the decision model and the supporting models.

Roles in the GRADE taxonomy represent individuals involved in the decision-
making. The roles are classified into types, functions, levels and perspectives.

The assets concept in the GRADE taxonomy describes the decision assets (often
encapsulated in a software component or software service) characterized by: origin,
attributes, type, usage and realization options.

The decision concept of GRADE contains the decision methods that can be used
for estimating outcomes for a specific option among those evaluated in the decision-
making process.

The environment concept of the GRADE taxonomy describes the environment
before the decision was analyzed or made. It includes the characteristics of
organizations, products, stakeholders, markets and business prior to making a
decision.

2.4 Decision-making in software business

Running a software business requires making several decisions on multiple levels
[1], ranging from strategic decisions about mergers, acquisition and take-overs [31],
via tactical decisions on which ecosystem to join and support [16] to highly technical
decisions on how to realize customer requirements in software. An increasing number
of software companies evolve from the pure creator business archetype that implies
code ownership but also development risk, high maintenance cost and full
responsibility for delivering the required quality towards mixed or hybrid business
models that imply taking on several business archetype roles [26]. At the same time,
small and large companies take on outsourcing initiatives to reduce development costs
and obtain valuable knowledge and inspiration. This shifts the center of gravity
towards integration work and coordination of outsourced (often also offshored) sites
into software products that deliver the value that customers expect. Finally, joining or
creating an ecosystem entails a series of decisions regarding growing a healthy
ecosystem [16], participating in ecosystem development and gaining importance and
influence or disrupting markets by commoditization of ecosystem software. Each of
the mentioned four asset origins thus has different implications both in the short term
and in the long term. They come with different costs and prices and can bring
different benefits. Decision-makers responsible for running their software businesses
are faced with increased decision complexity and frequency that they need to cope

6 Wohlin et al.

with to succeed with their business endeavors. An example here is decision-making in
cloud computing environments for selecting appropriate services from different
providers [22].

3 Descriptive models

Three descriptive models are built from the GRADE taxonomy to ensure that no
aspect is missed in the decision-making. Thus, the descriptive models become part of
an instantiation of the taxonomy. The instantiation includes two main parts:
description of the concepts based on GRADE (the three descriptive models) and the
actual decision-making process.

The main objective of the decision approach presented is to enable a systematic
way to select between different software asset origins, including potentially both
software components and software services. The types considered represent four main
asset origins: in-house, COTS, open source and outsourcing.

The three descriptive models correspond to the five fundamental concepts in
GRADE, as described and mapped in Figure 1. In particular, the five concepts
comprise: 1) the three decision model cornerstones: stakeholders (roles), origins
(assets) and criteria (goals); and 2) two supporting models – property models
(decision) and context models (environment). The decision model with its three
decision cornerstones are described in Section 3.1, the property models are discussed
in Section 3.2 and the context models are further elaborated in Section 3.3.

In addition to experience of the involved stakeholders, it is beneficial to support the
decision-making with related historical evidence and experiences. This can be
captured in an evidence-based knowledge repository, which is elaborated in some
more detail in Section 4.

3.1 Decision Model

The decision model consists of three main cornerstones:
Stakeholders – which stakeholders (and hence different perspectives) need to be

involved? The stakeholders should be identified from the roles in GRADE that should
be involved in the decision-making. The creator, distributor, lessor and broker
business archetypes [26] help in identifying relevant stakeholders that influence the
value creation and delivery processes. The current model involved both internal
stakeholders as well as end customers and external stakeholders. As many software
companies currently run hybrid business models with additional revenue streams
originating from cross-selling and complementariness, the set of potential
stakeholders is much broader than in the in-house scenario.

The stakeholders have different perspectives (as described through the Roles
concept in GRADE) that should be taken into account in the decision-making process.
This could be exemplified with the following five software engineering areas: 1)
business and requirements engineering, 2) non-functional properties, 3) life-cycle
perspective, 4) architecture, and 5) implementation and integration, including

Supporting Strategic Decision-making for Selection of Software Assets 7

verification and validation. The business and requirements engineering perspective is
responsible for capturing the customer value and translating it to the form that can be
used for decision-making. Business analysts and requirements engineers play key
roles in capturing and prioritizing customer needs. Other perspectives may also be
relevant, for example the strategic management perspective.

Origins – which type of asset origins should be considered (in-house, open source,
COTS and/or outsourcing)? In this case, the asset concept in GRADE is defined as
potentially coming from four different asset origins. Thus, it is assumed that the main
decision to be taken relates to where a software component or service needed in a
product or system is developed, obtained or acquired. The actual choice of, for
example, a specific COTS component is not considered, i.e. the selection between
competing alternative assets of the same origin.

Criteria – which criteria should be evaluated to ensure an informed decision? The
criteria are based on the Goal concept in GRADE. Since the goals may be quite
general, some goals may not be relevant for a specific decision. It is important to
acknowledge here that criteria can have at least three perspectives: customer
perspective, internal-business perspective, and community (or ecosystem
perspective). The goals and criteria should be identified and tagged by the relevant
perspective and potential conflicts between perspectives should be identified and
mitigated. The involved stakeholder roles should review the goals, mitigate potential
conflicts and translate them into defined decision criteria to be used in the decision-
making. Criteria should be more detailed than the goals and need to be measurable,
i.e. contain a threshold for a certain property attribute (e.g. a specific attribute of
software quality or gaining 1 000 000 users of a software service within 2 months
after the service is launched). Thus, criteria should be possible to evaluate, for
example, they could state that a certain property should be above a certain threshold,
and each criterion should be evaluated for each viable asset origin. The chosen criteria
should be evaluated, where business risk most likely is always one of the criteria.
Risk is a criterion by itself in relation to a specific asset origin, e.g. the risk of a COTS
supplier going bankrupt. However, risk is also related to the uncertainty in specific
decisions, their criteria, and the data they are based on, e.g. uncertainty in historical
cost or reliability figures.

The stakeholders contribute to the decision model as experts in their own area, for
example, business, architecture or requirements. They are involved in evaluating
possible asset origins viable for the specific case and formulating the criteria for the
decision based on the goals. Furthermore, the experts provide input to the property
models (see Section 3.2), they should describe the context of the decision (see Section
3.3) and they should help in identifying similar historical evidence and experiences
using the evidence-based knowledge repository (see Section 4). The latter includes
prioritizing among important factors to compare with historical evidence.

8 Wohlin et al.

3.2 Property Model

The decision concept in GRADE includes both models to estimate specific
properties and methods to, for example, weigh different criteria. The property models
come into play in estimating outcomes of the criteria for different asset origins, i.e.
there is a need to make the estimations wrt to different criteria for the relevant origins.

A property model is an estimation model with respect to a decision criterion. The
property model consists of a well-defined property and an evaluation method. For
example, the property can be the number of active users and the evaluation method
can be to check how many of these users have used the service the last seven days. A
property model may contain other property models. Examples of properties include
coordination costs, IT service costs and maintenance costs for selecting cloud
computing services [22]. The evaluation method may be quite simplistic, for example,
expert opinion or based on a sophisticated formal mathematical decision model [1].
Property models can also be more advanced, e.g. for the reliability criterion using
software reliability growth models (SRGM) based on historical data from similar
situations. Furthermore, some evaluation methods use generic statistical methods such
as regression analysis, while others are based on general methods but still are tailored
for a specific purpose such as SRGMs. Properties can and should also be estimated
for aspects relevant for communities, ecosystems and markets and not only for a
company’s internal or a project’s internal aspects. A good example here could be the
degree of influence on ecosystem members or the state of a company’s reputation in a
given ecosystem [16].

Property models provide estimates of values for the different criteria, and in most
cases the property models only handle one or a few properties at the time. Thus, there
is a need to decide the priorities of the different criteria and hence the weighing
between them, for example is cost more or less important than security. The methods
for managing the priorities between criteria, or for combining outcomes in different
ways are referred to as decision methods. For this purpose, it would be possible to
use, for example, methods such as AHP [29] and HCV [3].

As part of the decision-making, it should be decided, for example, whether the
stakeholders should try to take different time perspectives into account “manually” or
if the property models should instead be used more than once, for example, to make
estimations both for a short-term and a long-term perspective.

3.3 Context Model

The context model is a representation of the environment in which the decision is
taken. There are two main objectives of the context model. First, it helps in
identifying relevant criteria, property models and solutions previously used by others.
Second, it structures the decision at hand for future use in the evidence-based
knowledge repository. An example of a context model representation is presented in
[25]. It comprises six dimensions of the environment, four that capture the
organizational characteristics (including practices and tools) and two that are external
to the organization (business environment characteristics). The context model also

Supporting Strategic Decision-making for Selection of Software Assets 9

extends the environment concept in GRADE as it helps to understand the context in
the future and is integrated with the evidence-based knowledge repository described
in Section 4.

The context model should capture the current situation within an organization with
respect to 1) product before the decision, 2) people involved in relation to the
decision, 3) processes as well as 4) practices, techniques and tools. Furthermore,
5) the organization as such should be captured, 6) the market should be described as a
part of the context and other relevant aspects from the ecosystem that a company is
involved in. We believe that for a comprehensive context description that includes
business characteristics and can be effectively used for guiding business decisions, a
possible future area of research is to expand the six dimensions described in [25] to
better cover aspects such as the market, ecosystems and also business models.

4 Evidence-based knowledge repository

Historical information should be structured so that it is possible to find relevant or
similar cases, for example, similar context, prioritized similar criteria or an interest in
the same asset origins. The stored information may facilitate decision-making, but
also to provide what is generically known as traceability of a decision: what a
decision was about, who made the decision, and why the decision was made. This is
often referred to as the rationale for a decision. In this respect, any repository ought to
record all relevant aspects of a decision-making scenario. Furthermore, a repository
ought to contain other available information such as research articles on the topic, and
in particular systematic literature reviews, as well as publically available data or data
shared between trusted partners that can help support different steps of decision-
making.

Former decision information can represent an important support in the decision-
making process, at least to avoid errors made in the past. Therefore, if the repository
was considered as a mere post-decision storage support, it is difficult to justify and
motivate the effort of documenting decisions in detail. Furthermore, the repository
would miss a lot of its potentials: 1) as mentioned before, recurring decisions might
contain important lessons learned; and 2) multiple decisions could entail an agreement
about a more general development vision (e.g., different properties derivable from the
same goal by different stakeholders), thus requiring consistency. Thus, continuous
and reliable data collection, as well as use of the data, should be performed to unlock
the full potential that an evidence-based knowledge repository offers.

The repository should be able to smoothly manage large amounts of data and
should offer meaningful mechanisms to retrieve decisions as filtered by their
prominent characteristics (i.e., the cornerstones of the decision model), and pointers to
relevant studies on the topic. Compatibility and interoperability are important quality
attributes of a good decision knowledge repository and therefore we recommend
using open data standards supported by reliable quality management measures, e.g.
ISO/IEC 25012 SQuaRE [15], OGD eight principles [23] or Web Information Quality
assessment [5].

10 Wohlin et al.

Fig. 2. The decision-making process including having a knowledge repository.

5 Decision-making process

The decision-making process represents the actual conduct of decision-making, and it
is illustrated in Figure 2 using the numbering of the recommended steps below. Some
steps may be perceived as more important than others. However, it has been chosen to
present all steps as recommended steps, since the actual usefulness of the different
steps and preferred order of the steps may vary from case to case. Thus, the order of
the steps should be seen as one possible suitable order. Furthermore, an evidence-
based knowledge repository may not be available in all cases, and hence those steps
may not be applicable in all cases. It should also be noted that iterations are expected.
They may appear between any steps depending on the specific decision, or the
specific circumstances in relation to a decision. Thus, Figure 2 only illustrates the
expected iterations based on the evidence-based knowledge repository.

The recommended steps in the decision-making process are as follows:
1) Identify stakeholders to be involved in the decision – It is important to ensure

coverage of roles and persons to make sure that the decision made is possible
to implement efficiently. Each stakeholder that is relevant for the decision and
its consequences for the business should be identified here.

2) Evaluate the suitability of the four asset origins – The possible origins for a
software asset should be identified. This includes investigating the technical
and business compatibilities and the short and long term costs of selecting
each asset option. In certain cases, not all asset origins are allowed or suitable.
In some cases, the main decision is whether to do development in-house or
going externally. Sometimes, open source solutions are not an option. Thus,
the possible asset origins need to be identified carefully.

3) Decide criteria from goals – Based on the goals of the development, criteria
(both business and technical) have to be decided and suitable targets have to
be set. The latter should be done so that different asset origins can be
evaluated and compared with each other. In most cases, risk needs to be
considered as one criterion, since it may differ substantially for different asset
origins (in-house, COTS, open source and outsourcing).

Supporting Strategic Decision-making for Selection of Software Assets 11

4) Decide on priorities of criteria – In addition to deciding on targets for each

criterion, it is also important to decide how they should be prioritized, e.g.
using AHP [29] or HCV [3]. It may also be the case that certain stakeholders
have more say in a decision, which has to be taken into account, i.e. different
stakeholder roles may need to be weighed differently in the prioritization
process.

5) Decide on how to handle the time aspect – Certain solutions may be perceived
better or worse in the short-term and long-term respectively. For example, a
certain solution may be very good to get a product on the market, but it is not
very good for the long-term architecture of the product. The time aspect is
highly relevant for decisions that concern ecosystem participation or OSS
involvement as in these two cases the competitive advantage created based on
the ecosystem or OSS commodity layer comes with a long term maintenance
cost. Thus, selective revealing should be considered and based on competitive
advantage time estimates. The degree of commoditization or commoditization
index should be projected onto the average sale time for new products. To
cope with the time aspect, the decision-makers either have to take time aspects
into account when prioritizing between different asset origins or evaluations
have to be done separately for different time aspects, e.g. short-term and long-
term, and the tradeoff between them has to be agreed upon.

6) Describe the context – To enable comparison with previous cases internally
and externally as well as with the research literature, the case has to be
described. This should be done using the context model, where salient aspects
have to be captured. This may include business model(s) used, application
domain, system size and development method as well as a range of other
aspects [25]. Independently, it is crucial to capture these aspects to enable
identification of similar cases and hence relevant evidence and experiences.

7) Look for similar cases in a knowledge repository – The identification of
similar cases is done using the context model as well as the asset origins
considered as suitable and the criteria. Thus, a similar case is defined as
having some key aspects of the context in common (from Step 6) as well as a
focus on similar criteria (from Steps 3 and 4) and similar suitable asset origins
(Step 2). Similar cases are identified and studied to identify evidence and
experience that are perceived important in the current case and to uncover
potential alternative decision scenarios [8]. The knowledge repository could be
solely based on internal cases or a more elaborate database containing both
internal and external cases. The information in the knowledge repository may
indicate that in other similar cases other asset origins, criteria, property models
or decisions have been considered. Thus, it is important to be able to challenge
the choices made in the other steps as illustrated in Figure 2.

8) Decide on property models to use – Once the criteria are decided, there is a
need to decide how the criteria should be evaluated. If having a knowledge
repository, this can be done by retrieving valuable information from the
knowledge repository in terms of what others have used in similar cases (Step
7). If there is no knowledge repository, the property models for each criterion

12 Wohlin et al.

have to be decided without additional support, whether they are expert
opinions or more advanced estimation models.

9) Make estimations using the property models – Given the chosen property
models, estimations need to be done for each criterion for the asset origins
under consideration and potentially for different time aspects based on the
approach decided in Step 5.

10) Weigh the estimation results of the selected properties based on the priorities
of criteria – Based on the priorities of the different criteria, the estimation
results from the different property models should be weighed together. This is
non-trivial given that the values as such cannot be combined easily in many
cases. It is rather the estimation of each criterion and its distance from the
targets that need to be weighed together.

11) Make a tentative decision – Once the outcomes from the property models have
been weighed together, it should be possible for the decision-makers to make a
tentative decision. If a knowledge repository is available, it is recommended to
browse previous decisions and review relevant tentative scenarios and
compare the tentative decision with decisions from similar cases as described
in Step 7. Relevant business context factors should be evaluated here based on
similar cases. This should be done to make a final evaluation of the decision,
and ensure that the reasoning done is as correct as possible and that no
relevant available information is ignored.

12) Make a final decision – This has been the objective of the decision-making
process and hence it is a very important step for the development. It is
important that the stakeholders are able to communicate both the actual
decision and the rationale for the decision.

13) Store the case in the knowledge repository – The case information, including
the context model, the criteria used, the stakeholders involved and the asset
origins considered should be carefully documented. This step is important as it
allows for transparency if the case is properly documented (including the
decision rationale) and helps to organically grow the evidence-base knowledge
repository. It is important to add new cases given the speed of change and
hence ensure that recent cases are available for decisions to come.

14) At the end of the decision-making process, the objective is that the
stakeholders should have come to either a consensus or at least that the
involved stakeholders know why the decision was made, and are able to
communicate it in the organization.

6 Summary and further work

The decision support models and process may seem complex, but they address a
challenging area for companies. The development of today’s software products,
systems and services is a complex endeavor. The decisions of choosing software
components (or services), whether being in-house development vs. external options
such as COTS, open source and outsourcing, are most often strategic decisions and

Supporting Strategic Decision-making for Selection of Software Assets 13

they heavily influence competitiveness. The approach presented in this paper provides
a starting point for supporting such decisions and address the research gap identified
in a recent systematic literature review [2].

The approach addresses several key questions to make a decision with respect to
selecting the origin of software assets (components and services). However, before
using the approach the actual decision needs to be determined, what to decide. The
decision process as such illustrates how a decision may be made. Furthermore, who
makes the decision is determined by the identification of the stakeholders. The main
reasons for the decision, i.e. why a decision is made, are captured through the criteria
in the decision model.

The focus of this work is on selecting between different types of asset origins, and
not between different actual components or services of the same type. The objective is
to integrate selection of competing specific alternatives into the models and process,
including both the tradeoffs between components and services as well as between
different components or services of the same asset origin. This is part of further work
as well as to empirically evaluate the proposal through case studies.

The presented models and process is based on the assumption that the stakeholders
involved into the decision-making process capture customer needs and values. Thus,
the model can be applied for both B2B and B2C contexts as long as all relevant
stakeholders are identified and involved in decision-making. For B2C contexts, end
users and other external stakeholders need to be involved and accurately represented.

In future work, we plan to survey a number of business scenarios that involve
diverse business models, asset origins, company characteristics and ecosystem
participation models. We aim at characterizing these scenarios by identifying
common and variable parts and clearly outlining short- and long-term consequences
of each decision alternative. These should form guidelines that software business
practitioners may use when considering various sourcing options. Moreover, we plan
to expand our research on the evidence-based knowledge repository and create the
first implementation of a repository that can support decision-makers. Finally, we
plan to conduct an empirical study that will evaluate the presented decision-making
approach and identify future work directions.

Acknowledgments.
The work is supported by a research grant for the ORION project (reference number 20140218)
from The Knowledge Foundation in Sweden. Furthermore, we would like to thank our
colleagues in the ORION project for fruitful discussions and the external reviewers that have
helped improving the paper.

14 Wohlin et al.

References
[1] Aurum A. and Wohlin, C.: The Fundamental Nature of Requirements Engineering

Activities as a Decision-Making Process, Inf. and Soft. Tech., 45, (2003) 945–954

[2] Badampudi, D., Wohlin, C. and Petersen, K.: Software Component Decision-making: In-
house, Open source, COTS or Outsourcing - A Systematic Literature Review. In revision
after review for journal publication (2016)

[3] Berander, P. and Jönsson, P.: Hierarchical Cumulative Voting (HCV) - Prioritization of
Requirements in Hierarchies. International Journal of Software Engineering and
Knowledge Engineering 16, (2006) 819–849

[4] Biffl, S., Aurum, A., Boehm, B., Erdogmus, H. and Grünbacher, P. (eds.). Value-Based
Software Engineering. Springer Science & Business Media (2006)

[5] Bizer, C. and Cyganiak, R.: Quality-Driven Information Filtering Using the WIQA Policy
Framework, Web Semantics: Science, Services and Agents on the WWW, 7 (2009) 1-10

[6] Breivold, H. P. and Larsson, M.: Component-Based and Service-Oriented Software
Engineering: Key Concepts and Principles. Proceedings of the 33rd EUROMICRO
Conference on Software Engineering and Advanced Applications, SEAA (2007)13–20

[7] Cárdenas-Garcia, S. and Zelkowitz, M. V.: A Management Tool for Evaluation of
Software Design. IEEE Transactions on Software Engineering 17, (1991) 961–971

[8] Cicchetti, A., Borg, M., Sentilles, S., Wnuk, K., Carlson, J. and Papatheocharous, E.:
Towards Software Assets Origin Selection Supported by a Knowledge Repository. In 1st
MARCH Workshop at WICSA and CompArch 2016, April 5, Venice (Italy) (2016)

[9] Cortellessa, V., Marinelli, F. and Potena, P.: Automated Selection of Software
Components Based on Cost / Reliability Tradeoff. Proceedings of the 3rd European
Workshop on Software Architecture (EWSA’06), (2006) 66–81

[10] Cortellessa, V., Marinelli, F. and Potena, P.: An Optimization Framework for “Build-or-
buy” Decisions in Software Architecture. Computers and Operations Research 35 (2008)
3090–3106

[11] Cusumano, M. A.: The Business of Software: What Every Manager, Programmer, and
Entrepreneur Must Know to Thrive and Survive in Good Times and Bad, Simon and
Schuster, (2004)

[12] Franke, U. and Buschle, M.: Experimental Evidence on Decision-Making in Availability
Service Level Agreements. IEEE Transactions on Network and Service Management, 13,
(2016) 58-70

[13] Gregoriades, A. and Sutcliffe, A.: Scenario-Based Assessment of Nonfunctional
Requirements. IEEE Transactions on Software Engineering 31, (2005) 392–409

[14] Huhns, M. and Singh, M. P.: Service-Oriented Computing: Key Concepts and Principles.
IEEE Internet Computing 9, (2005) 75–81

[15] ISO/IEC 25012: http://iso25000.com/index.php/en/iso-25000-standards/iso-25012

[16] Jansen, S. Brinkkemper, S. and Cusumano, M. A.: Software Ecosystems: Analyzing and
Managing Business Networks in the Software Industry, Edward Elgar Publishing, (2013)

[17] Jha, P. C., Bali, S., Kumar, U. and Pham, H.: Fuzzy Optimization Approach to Component
Selection of Fault-tolerant Software System. Memetic Computing 6, (2014) 49–59

[18] Jha, P. C., Bali, V., Narula, S. and Kalra, M.: Optimal Component Selection Based on
Cohesion & Coupling for Component Based Software System Under Build-or-buy
scheme. Journal of Computational Science 5, (2014) 233–242

Supporting Strategic Decision-making for Selection of Software Assets 15

[19] Kramer, T. and Eschweiler, M.: Outsourcing Location Selection with SODA: A
Requirements Based Decision Support Methodology and Tool. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) 7908 LNCS, (2013) 530–545

[20] Kramer, T., Heinzl, A. and Spohrer, K.: Should this Software Component be Developed
Inside or Outside our Firm? - A Design Science Perspective on the Sourcing of
Application Systems. In New Studies in Global IT and Business Service Outsourcing.
Springer Berlin Heidelberg, (2011) 115–132

[21] Lawlis, P. K., Mark, K. E., Thomas, D. A. and Courtheyn, T.: A Formal Process for
Evaluating COTS Software Products. Computer 34, (2001) 58–63

[22] Martens, B. and Teuteberg, F.: Decision-Making in Cloud Computing Environments: A
Cost and Risk Based Approach, Information Systems Frontiers, 14, (2012) 871-893

[23] Open Government Data (OGD): https://opengovdata.org/

[24] Papatheocharous, E., Petersen, K., Cicchetti, A., Sentilles, S., Shah, S. M. A. and
Gorschek, T.: Decision Support for Choosing Architectural Assets in the Development of
Software-Intensive Systems: The GRADE taxonomy. Proceedings of the 1st International
Workshop on Software Architecture Asset Decision-making, Article No. 48 (2015)

[25] Petersen, K. and Wohlin, C.: Context in Industrial Software Engineering Research.
Proceedings of the 2009 3rd International Symposium on Empirical Software Engineering
and Measurement, (2009) 401–404

[26] Popp, K. M.: Software Industry Business Models, IEEE Software, 28 (2011) 26-30

[27] Potena, P. L.: Composition and Tradeoff of Non-functional Attributes in Software
Systems. European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, (2007) 583–585

[28] Resnik, M. D.: Choices: An Introduction to Decision Theory. University of Minnesota
Press (1987)

[29] Saaty, T. L.: Decision Making with the Analytic Hierarchy Process. International Journal
of Services Sciences 1, (2008) 1-83

[30] Singpurwalla, N. D.: Determining an Optimal Time Interval for Testing and Debugging
Software. IEEE Transactions on Software Engineering 17 (1991) 313–319

[31] Schief, M., Buxmann, P and Schiereck, D.: Mergers and Acquisitions in the Software
Industry, Business & Information Systems Engineering, 5, (2013) 421-431.

[32] Šmite D., Wohlin, C., Galviņa, Z. and Prikladnicki, R.: An empirically Based
Terminology and Taxonomy for Global Software Engineering. Empirical Software
Engineering 19, (2014) 105–153

[33] Starmer, C.: Developments in non-expected utility theory: the hunt for a descriptive theory
of choice under risk. Journal of Economic Literature 38, (2000) 332–382

[34] Ssaed, A. A., Wan Kadir, W. M. N. and Hashim, S. Z. M.: Metaheuristic search approach
based on in-house/out-sourced strategy to solve redundancy allocation problem in
component-based software systems. Int. J. of Soft. Eng. and its Applic. 6, (2012) 143–154

[35] Vale, T., Crnkovic, I., de Almeida E. S., da Mota Silveira Neto, P. A., Cerqueira
Cavalcantic, Y., and de Lemos Meira, S. R.: Twenty-eight years of component-based
software engineering. Journal of Systems and Software 111, (2016) 128–148

