

C. Wohlin, M. Höst and K. Henningsson, "Empirical Research Methods in Software
Engineering", In Lecture Notes in Computer Science: Empirical Methods and Studies
in Software Engineering: Experiences from ESERNET, edited by A. I. Wang and R.

Conradi, Springer Verlag, 2003.

In Empirical Methods and Studies in Software Engineering: Experiences from ESERNET, pp.
7-23, editors Reidar Conradi and Alf Inge Wang, Lecture Notes in Computer Science, Spinger-
Verlag, Germany, LNCS 2765.

Empirical Research Methods in Software Engineering

Claes Wohlin1, Martin Höst2, and Kennet Henningsson1

1Dept. of Software Engineering and Computer Science Blekinge Institute of Technology
Box 520, SE-372 25 Ronneby, Sweden

Claes.Wohlin@bth.se, Kennet.Henningsson@bth.se

2Dept. of Communication Systems, Lund University
Box 118, SE-221 00 Lund, Sweden

Martin.Host@telecom.lth.se

Abstract. Software engineering is not only about technical solutions. It is to a
large extent also concerned with organizational issues, project management and
human behaviour. For a discipline like software engineering, empirical methods
are crucial, since they allow for incorporating human behaviour into the
research approach taken. Empirical methods are common practice in many
other disciplines. This chapter provides a motivation for the use of empirical
methods in software engineering research. The main motivation is that it is
needed from an engineering perspective to allow for informed and well-
grounded decision. The chapter continues with a brief introduction to four
research methods: controlled experiments, case studies, surveys and post-
mortem analyses. These methods are then put into an improvement context. The
four methods are presented with the objective to introduce the reader to the
methods to a level that it is possible to select the most suitable method at a
specific instance. The methods have in common that they all are concerned with
quantitative data. However, several of them are also suitable for qualitative
data. Finally, it is concluded that the methods are not competing. On the
contrary, the different research methods can preferably be used together to
obtain more sources of information that hopefully lead to more informed
engineering decisions in software engineering.

1 Introduction

To become a true engineering discipline software engineering has to adopt and adapt
research methods from other disciplines. Engineering means, among other things, that
we should be able to understand, plan, monitor, control, estimate, predict and improve
the way we engineer our products. One enabler for doing this is measurement.
Software measurement forms the basis, but it is not sufficient. Empirical methods
such as controlled experiments, case studies, surveys and post-mortem analyses are
needed to help us evaluate and validate the research results. These methods are
needed so that it is possible to scientifically state whether something is better than
something else. Thus, empirical methods provide one important scientific basis for
software engineering. For some type of problems other methods, for example the use
of mathematical models for predicting software reliability, are better suited, but in
most cases the best method is applying empiricism. The main reason being that
software development is human intensive, and hence it does not lend itself to
analytical approaches. This means that empirical methods are essential to the
researcher.

The empirical methods are however also crucial from an industrial point of view.
Companies aspiring to become learning organisations have to consider the following
definition of a learning organisation:

1(15)

mailto:Claes.Wohlin@bth.se
mailto:Kennet.Henningsson@bth.se
mailto:Martin.Host@telecom.lth.se

In Empirical Methods and Studies in Software Engineering: Experiences from ESERNET, pp.
7-23, editors Reidar Conradi and Alf Inge Wang, Lecture Notes in Computer Science, Spinger-
Verlag, Germany, LNCS 2765.

“A learning organisation is an organisation skilled at creating, acquiring, and
transferring knowledge, and at modifying its behavior to reflect new knowledge and
insights” [1]

Garvin continues with stating that learning organisations are good at five activities:

systematic problem solving, experimentation, learning from past experiences, learning
from others, and transferring knowledge. This includes relying on scientific methods
rather than guesswork. From the perspective of this chapter, the key issue is the
application of a scientific method and the use of empirical methods as a vehicle for
systematic improvement when engineering software. The quote from Garvin is in-line
with the concepts of the Quality Improvement Paradigm and the Experience Factory
[2] that are often used in a software engineering context.

In summary, the above means that software engineering researchers and learning
organisations both have a need to embrace empirical methods. The main objective of
this chapter is to provide an introduction to four empirical research methods and to
put them into an engineering context.

The remainder of this chapter is outlined as follows. Four empirical methods are
briefly introduced in Section 2 to provide the reader with a reference framework to
better understand the differences and similarities between the methods later. In
Section 3, the four empirical methods are put into an improvement context before
presenting the methods in some more details in Sections 4-7. The chapter is
concluded with a short summary in Section 8 and references in Section 9.

2 Overview of Empirical Methods

There are two main types of research paradigms having different approaches to
empirical studies. Qualitative research is concerned with studying objects in their
natural setting. A qualitative researcher attempts to interpret a phenomenon based on
explanations that people bring to them [3]. Qualitative research begins with accepting
that there is a range of different ways of interpretation. It is concerned with
discovering causes noticed by the subjects in the study, and understanding their view
of the problem at hand. The subject is the person, which is taking part in a study in
order to evaluate an object.

Quantitative research is mainly concerned with quantifying a relationship or to
compare two or more groups [4]. The aim is to identify a cause-effect relationship.
The quantitative research is often conducted through setting up controlled
experiments or collecting data through case studies. Quantitative investigations are
appropriate when testing the effect of some manipulation or activity. An advantage is
that quantitative data promotes comparisons and statistical analysis. The use of
quantitative research methods is dependent on the application of measurement, which
is further discussed in [5].

It is possible for qualitative and quantitative research to investigate the same topics
but each of them will address a different type of question. For example, a quantitative
investigation could be launched to investigate how much a new inspection method
decreases the number of faults found in test. To answer questions about the sources of
variations between different inspection groups, we need a qualitative investigation.

As mentioned earlier quantitative strategies such as controlled experiments are
appropriate when testing the effects of a treatment, while a qualitative study of beliefs
and understandings are appropriate to find out why the results from a quantitative
investigation are as they are. The two approaches should be regarded as com-
plementary rather than competitive.

In general, any empirical study can be mapped to the following main research
steps: Definition, Planning, Operation, Analysis & interpretation, Conclusions and
Presentation & packaging. The work within the steps differs considerably depending

2(15)

In Empirical Methods and Studies in Software Engineering: Experiences from ESERNET, pp.
7-23, editors Reidar Conradi and Alf Inge Wang, Lecture Notes in Computer Science, Spinger-
Verlag, Germany, LNCS 2765.

on the type of empirical study. However, instead of trying to present four different
research methods according to this general process, we have chosen to highlight the
main aspects of interest for the different types of studies.

Depending on the purpose of the evaluation, whether it is techniques, methods or
tools, and depending on the conditions for the empirical investigation, there are four
major different types of investigations (strategies) that are addressed here:

Experiment. Experiments are sometimes referred to as research-in-the-small [6],
since they are concerned with a limited scope and most often are run in a
laboratory setting. They are often highly controlled and hence also occasionally
referred to as controlled experiment, which is used hereafter. When experimenting,
subjects are assigned to different treatments at random. The objective is to
manipulate one or more variables and control all other variables at fixed levels.
The effect of the manipulation is measured, and based on this a statistical analysis
can be performed. In some cases it may be impossible to use true experimentation,
we may have to use quasi-experiments. The latter term is often used when it is
impossible to perform random assignment of the subjects to the different
treatments. An example of a controlled experiment in software engineering is to
compare two different methods for inspections. For this type of studies, methods
for statistical inference are applied with the purpose of showing with statistical
significance that one method is better than the other [7, 8, 9].

•

•

•

•

Case study. Case study research is sometimes referred to as research-in-the-typical
[6]. It is described in this way due to that normally a case study is conducted
studying a real project and hence the situation is “typical”. Case studies are used
for monitoring projects, activities or assignments. Data is collected for a specific
purpose throughout the study. Based on the data collection, statistical analyses can
be carried out. The case study is normally aimed at tracking a specific attribute or
establishing relationships between different attributes. The level of control is lower
in a case study than in an experiment. A case study is an observational study while
the experiment is a controlled study [10]. A case study may, for example, be aimed
at building a model to predict the number of faults in testing. Multivariate
statistical analysis is often applied in this type of studies. The analysis methods
include linear regression and principal component analysis [11]. Case study
research is further discussed in [9, 12, 13,14].

The following two methods are both concerned with research-in-the-past, although

they have different approaches to studying the past.
Survey. The survey is by [6] referred to as research-in-the-large (and past), since it
is possible to send a questionnaire to or interview a large number people covering
whatever target population we have. Thus, a survey is often an investigation
performed in retrospect, when e.g. a tool or technique, has been in use for a while
[13]. The primary means of gathering qualitative or quantitative data are interviews
or questionnaires. These are done through taking a sample that is representative
from the population to be studied. The results from the survey are then analyzed to
derive descriptive and explanatory conclusions. They are then generalized to the
population from which the sample was taken. Surveys are discussed further in
[9,15].
Post-mortem analysis. This type of analysis is also conducted on the past as
indicated by the name. However, it should be interpreted a little broader than as
post-mortem. For example, a project does not have to be finished to launch a post-
mortem analysis. It would be possible to study any part of a project retrospectively
using this type of analysis. Thus, this type of analysis may, in the descriptive way
used by [6], be described as being research-in-the-past-and-typical. It can hence be
viewed as related to both the survey and the case study. The post-mortem may be
conducted by looking at project documentation (archival analysis [9]) or by

3(15)

In Empirical Methods and Studies in Software Engineering: Experiences from ESERNET, pp.
7-23, editors Reidar Conradi and Alf Inge Wang, Lecture Notes in Computer Science, Spinger-
Verlag, Germany, LNCS 2765.

interviewing people, individually or as a group, who have participated in the object
that is being analysed in the post-mortem analysis.

An experiment is a formal, rigorous and controlled investigation. In an experiment

the key factors are identified and manipulated. The separation between case studies
and experiment can be represented by the notion of a state variable [13]. In an
experiment, the state variable can assume different values and the objective is
normally to distinguish between two situations, for example, a control situation and
the situation under investigation. Examples of a state variable could be, for example,
the inspection method or experience of the software developers. In a case study, the
state variable only assumes one value, governed by the actual project under study.

Case study research is a technique where key factors that may have any affect on
the outcome are identified and then the activity is documented [12, 14]. Case study
research is an observational method, i.e. it is done by observation of an on-going
project or activity.

Surveys are very common within social sciences where, for example, attitudes are
polled to determine how a population will vote in the next election. A survey provides
no control of the execution or the measurement, though it is possible to compare it
with similar ones, but it is not possible to manipulate variables as in the other
investigation methods [15].

Finally, a post-mortem analysis may be viewed as inheriting properties from both
surveys and case studies. A post-mortem may contain survey elements, but it is
normally concerned with a case. The latter could either be a full software project or a
specific targeted activity.

For all four methods, it is important to consider the population of interest. It is
from the population that a sample should be found. The sample should preferably be
chosen randomly from the population. The sample consists of a number of subjects,
for example in many cases individuals participating in a study. The actual population
may vary from an ambition to have a general population, as is normally the objective
in experiments where we would like to generalize the results, to a more narrow view,
which may be the case in post-mortem analyses and case studies.

Some of the research strategies could be classified both as qualitative and
quantitative, depending on the design of the investigation, as shown in Table 1. The
classification of a survey depends on the design of the questionnaires, i.e. which data
is collected and if it is possible to apply any statistical methods. Also, this is true for
case studies but the difference is that a survey is done in retrospect while a case study
is done while a project is executed. A survey could also be launched before the
execution of a project. In the latter case, the survey is based on previous experiences
and hence conducted in retrospect to these experiences although the objective is to get
some ideas of the outcome of the forthcoming project. A post-mortem is normally
conducted close to finish an activity or project. It is important to conduct it close in
time to the actual finish so that people are still available and the experiences fresh.

Experiments are purely quantitative since they have a focus on measuring different
variables, change them and measure them again. During these investigations
quantitative data is collected and then statistical methods are applied. Sections 4-7
give introductions to each empirical strategy, but before this the empirical methods
are put into an improvement context in the following section. The introduction to
controlled experiments is longer than for the other empirical methods. The main
reason being that the procedure for running controlled experiments is more formal,
i.e. it is sometimes referred to as a fixed design [9]. The other methods are more
flexible and it is hence not possible to describe the actual research process in the same
depth. Table 1 indicates this, where the qualitative and quantitative nature of the
methods are indicated. Methods with a less fixed design are sometimes referred to as
flexible design [9], which also indicates that the design may change during the
execution of the study due to events happening during the study.

4(15)

In Empirical Methods and Studies in Software Engineering: Experiences from ESERNET, pp.
7-23, editors Reidar Conradi and Alf Inge Wang, Lecture Notes in Computer Science, Spinger-
Verlag, Germany, LNCS 2765.

Table 1. Qualitative vs. quantitative in empirical strategies.

Strategy Qualitative / Quantitative
Experiment Quantitative
Case study Both
Survey Both
Post-mortem Both

3 Empirical Methods in an Improvement Context

Systematic improvement includes using a generic improvement cycle such as the
Quality Improvement Paradigm (QIP) [2]. This improvement cycle is generic in the
sense that it can both be viewed as a recommended way to work with improvement of
software development, but it may also be used as a framework for conducting
empirical studies. For simplicity, it is here primarily viewed as a way of improving
software development, and complemented with a simple three steps approach on how
the empirical methods can be used as a vehicle for systematic engineering-based
improvement.

The QIP consists of six steps that are repeated iteratively:
1. Characterize. The objective is to understand the current situation and

establish a baseline.
2. Set goals. Quantifiable goals are set and given in terms of improvement.
3. Choose process/method/technique. Based on the characterization and the

goals, the part to improve is identified and a suitable improvement candidate
is identified.

4. Execute. The study or project is performed and the results are collected for
evaluation purposes.

5. Analyze. The outcome is studied and future possible improvements are
identified.

6. Package. The experiences are packaged so that it can form the basis for
further improvements.

It is in most cases impossible to start improving directly. The first step is normally

to understand the current situation and then improvement opportunities are identified
and they need to be evaluated before being introduced into an industrial process as an
improvement. Thus, systematic improvement is based on the following steps:
• Understand,
• Evaluate, and
• Improve.

As a scenario, it is possible to imagine that one or both of the two methods looking

at the past are used for understanding and baselining, i.e. a survey or a post-mortem
analysis may be conducted to get a picture of the current situation. The objectives of a
survey and a post-mortem analysis are slightly different as discussed in Section 2. The
evaluation step may either be executed using a controlled experiment or a case study.
It is most likely a controlled experiment if the identified improvement candidate is
evaluated in a laboratory setting and compared with another method, preferably the
existing method or a method that may be used for benchmarking. It may be a case
study if it is judged that the improvement candidate can be introduced in a pilot
project directly. This pilot project ought to be studied and a suitable method is to use a
case study. In the actual improvement in an industrial setting (normally initially in

5(15)

In Empirical Methods and Studies in Software Engineering: Experiences from ESERNET, pp.
7-23, editors Reidar Conradi and Alf Inge Wang, Lecture Notes in Computer Science, Spinger-
Verlag, Germany, LNCS 2765.

one project), it is probably best suited to use a case study approach, which then may
be compared with the situation found when creating the understanding. Finally, if the
evaluation comes out positive, the improvement is incorporated in the standard
software development process.

The above means that the four methods presented here should be viewed as
complementary and not competing. They have all their benefits and drawbacks. The
scenario above should be viewed as one possible way of using the methods as
complementary in improving the way software is engineered.

Next, the four methods are presented in more detail to provide an introduction and
understanding of them. The objective is to provide sufficient information so that a
researcher intending to conduct an empirical study in software engineering can select
an appropriate method given the situation at hand.

4 Controlled experiments

4.1 Introduction

In an experiment the researcher has control over the study and how the participants
carry out the tasks that they are assigned to. This can be compared to a typical case
study, see below, where the researcher is more of an observer. The advantage of the
experiment is, of course, that the study can be planned and designed to ensure high
validity, although the drawback is that the scope of the study often gets smaller. For
example, it would be possible to view a complete software development project as a
case study, but a typical experiment does not include all activities of such a project.

Experiments are often conducted to compare a number of different techniques,
methods, working procedures, etc. For example, an experiment could be carried out
with the objective of comparing two different reading techniques for inspections. In
this example two groups of people could independently perform a task with one
reading technique each. That is, if there are two reading techniques, R1 and R2, and
two groups, G1 and G2, then people in group G1 could use technique R1 and people
in group G2 could use technique R2. This small example is used in the following
subsections to illustrate some of the concepts for controlled experiments.

4.2 Design

Before the experiment can be carried out it must be planned in detail. This plan is
often referred to as the design of the experiment.

In an experiment we wish to draw conclusions that are valid for a large population.
For example, we wish to investigate whether reading technique R1 is more effective
than reading technique R2 in general for any developer, project, organisation, etc.
However, it is, of course, impossible to involve every developer in the study.
Therefore, a sample of the entire population is used in the experiment. Ideally, it
would be possible to randomly choose a sample from the population to include in the
study, but this is for obvious reasons mostly impossible. Often, we end up trying to
determine to which population we can generalise the results from a certain set of
participants.

The main reason for the above is that relation between sample and population is
intricate and difficult to handle. In the software engineering domain, it is mostly
desirable to sample from all software developers, or a subset of them, for example all
software designers using a specific programming language. This is for practical
reasons impossible. Thus, in the best case it is possible to choose from software

6(15)

In Empirical Methods and Studies in Software Engineering: Experiences from ESERNET, pp.
7-23, editors Reidar Conradi and Alf Inge Wang, Lecture Notes in Computer Science, Spinger-
Verlag, Germany, LNCS 2765.

developers in the vicinity of the researcher. This means that it is not a true sample
from the population, although it may be fairly good. In many cases, it is impossible to
have professional developers and students are used, and in particular we have to settle
for students in a specific course. The latter is referred to as convenience sampling [9].
This situation leads to that we in most cases must go from subjects to population
when the preferred situation is to go from population to subjects through random
sampling. This should not necessarily be seen as a failure. It may be a complementary
approach. However, it is important to be aware of the difference and also to consider
how this affects the statistical analysis, since most statistical methods have developed
based on the assumption of a random sample from the population of interest. The
challenge of representative samples is also discussed in Chapter 3.

Another important principle of experiments is randomisation. With this we mean
that when it is decided which treatment every participant should be subject to, this is
done by random. For example, if 20 persons participate in the study where the two
reading techniques R1 and R2 are compared, it is decided by random which 10
persons that should use R1 and which 10 persons that should use R2.

In experiments a number of variables are often defined. Two important types of
variables are:

Independent variables: These variables describe the treatments in the experiment.
In the above example, the choice of reading technique is an independent variable
that can take one of the two values R1 or R2.

•

• Dependent variables: These variables are studied to investigate whether they are
influenced by the independent variables. For example, the number of defects can
be a dependent variable that we believe is dependent on whether R1 or R2 is used.
The objective of the experiment is to determine if and how much the dependent
variables are affected by the independent variables.

The independent and dependent variables are formulated to cover one or several

hypotheses that we have with respect to the experiment. For example, we may
hypothesize that the number of defects is dependent on the two reading techniques in
the example. Hypothesis testing is discussed further in relation to the analysis.

The independent and dependent variables are illustrated in Figure 1 together with
the confounding factors. Confounding factors are variables that may affect the
dependent variables without the knowledge of the researcher. It is hence crucial to try
to identify the factors that otherwise may affect the outcome in an undesirable way.
These factors are closely related to the threats against the validity of the empirical
study. Thus, it is important to consider confounding factors and the threats to the
study throughout the performance of any empirical study. The threats to empirical
studies are discussed in Section 4.4. One objective of the design is to minimise the
effect of these factors.

Independent
variables

Confounding
factors

Dependent
variables

Experiment

Figure 1. Variables in an experiment.

Often one of several available standard designs is used. Some examples of standard
designs are:
• Standard design 1: One independent variable with two values: For example, two

techniques should be compared and each participant uses one of the techniques.

7(15)

In Empirical Methods and Studies in Software Engineering: Experiences from ESERNET, pp.
7-23, editors Reidar Conradi and Alf Inge Wang, Lecture Notes in Computer Science, Spinger-
Verlag, Germany, LNCS 2765.

• Standard design 2: One independent variable with two values, paired design: The
difference between this design and standard design 1 is that each person in this
design is subject to both treatments. The order in which each participant should
apply the treatments is decided by random. For example, if the two reading
techniques should be evaluated, half of the participants first uses R1 and then R2,
and the other half first uses R2 and then R1. The reason for using the treatments in
different order is that effects of the order should be ruled out.

• Standard design 3: One independent variable with more than two values: The
difference between this design and standard design 1 is that more than two
treatments are compared. For example, three reading techniques may be compared.

• Standard design 4: More than one independent variable: With this design more
than one aspect can be evaluated in an experiment. For example, both the choice of
reading technique and requirements notation may be compared in one experiment.

The designs that are presented here are a summary of some of the most commonly

used designs. There are alternatives and more complicated designs. For example,
sometimes experiments are carried out as a combination of a pre-study and a main
experiment.

4.3 Operation

In the operation of an experiment a number of parts can be included. These include
both parts that have to be done when starting the experiment and when actually
running the experiment. Three key parts are:
• Commit participants: It is important that every participant is committed to the

tasks. There are a number of factors to consider, for example, if the experiment
concerns sensitive material, it will be difficult to get committed people.

• Prepare instrumentation: All the material that should be used during the experiment
must be prepared. This may include written instructions to the participants, forms
that should be used by the participants during the tests, etc. The instrumentation
should be developed according to the design of the experiment. In most cases
different participants should be given different sets of instructions and forms. In
many cases paper-based forms are used during an experiment. It is, however,
possible to collect data in a number of other ways, e.g., web-based forms,
interviews, etc.

• Execution: The actual execution denotes the part of the experiment where the
participants, subject to their treatment, carry out the task that they are assigned to.
For example, it may mean that some participants solve a development assignment
with one development tool and the other participants solve the same assignment
with another tool. During this task the participants use the prepared instrumentation
to receive instructions and to record data that can be used later in analysis.

4.4 Analysis and interpretation

Before actually doing any analysis, it is important to validate that the data is correct,
and that the forms etc. have been filled out correctly. This activity may also be sorted
under execution of the experiment, and hence be carried out before the actual
analysis.

The first part in the actual analysis is normally to apply descriptive statistics. This
includes plotting the data in some way to obtain an overview of the data. Part of this
analysis is done to identify and handle outliers. An outlier denotes a value that is
atypical and unexpected in the data set. They may, for example, be identified through
box-plots [16] or scatter-plots. Every outlier must be investigated and handled

8(15)

In Empirical Methods and Studies in Software Engineering: Experiences from ESERNET, pp.
7-23, editors Reidar Conradi and Alf Inge Wang, Lecture Notes in Computer Science, Spinger-
Verlag, Germany, LNCS 2765.

separately. It may be that the value simply is wrong. Then it may be corrected or
discarded. It may also, of course, be the case that the value is correct. In that case it
can be included in the analysis or, if the reason for the atypical value can be
identified, it may be handled separately.

When we have made sure that the data is correct and received a good
understanding of the data from the descriptive statistics then the analysis related to
testing one or several hypotheses can start. In most cases the objective here is to
decide whether there is an effect of the value of the independent variable(s) on the
value of the dependent variable(s). This is in most cases analysed through hypothesis
testing. To understand hypothesis testing some important definitions must be
understood:
• The null hypothesis H0 denotes that there is no effect of the independent variable

on the dependent variable. The objective of the hypothesis test is to reject this
hypothesis with a known significance.

• P(type-I error) = P(reject H0 | H0 is true). This probability may also be called the
significance of a hypothesis test.

• P(type-II error) = P(not reject H0 | H0 is false)
• Power = 1 - P(type-II error) = P(reject H0 | H0 is false)

When the test is carried out, a maximum P(type-I error) is first decided. Then a test

is used in order to decide whether it is possible to reject the null hypothesis or not.
When choosing a test, it must be decided whether to use parametric or non-parametric
tests. Generally, there are harder requirements on the data for parametric test. They
are, for example, based on that the data is normally distributed. However, parametric
tests generally have higher power than non-parametric tests, i.e. less data is needed to
obtain significant results when using parametric tests. The difference is not large. It is,
of course, impossible to provide any exact figure, but it is in most cases in the order of
10%. For every design there is a number of tests that may be used. Some examples of
tests are given in Table 2.

Table 2. Examples of tests.

Standard design (see above) Parametric tests Non-parametric tests
Standard design 1 t-test Mann-Whitney
Standard design 2 Paired t-test Wilcoxon, Sign-test
Standard design 3 ANOVA Kruskal-Wallis
Standard design 4 ANOVA

The tests in Table 2 are all described in a number of basic statistical references.

More information on parametric tests can be found in [7], and information on the non-
parametric tests can be found in, for example, [8] and [17].

Before the results are presented it is important to assess how valid the results are.
Basically there are four categories of validity concerns, which are discussed in a
software engineering context in [18]:
• Internal: The internal validity is concerned with factors that may affect the

dependent variables without the researcher's knowledge. An example of an issue is
whether the history of the participants affects the result of an experiment. For
example, the result may not be the same if the experiment is carried out directly
after a complicated fault in the code has caused the participant a lot of problem
compared to a more normal situation. A good example of how confounding factors
may threaten the internal validity in a study is presented in [19].

• External: The external validity is related to the ability to generalise the results of
the experiments. Examples of issues are whether the problem that the participants

9(15)

In Empirical Methods and Studies in Software Engineering: Experiences from ESERNET, pp.
7-23, editors Reidar Conradi and Alf Inge Wang, Lecture Notes in Computer Science, Spinger-
Verlag, Germany, LNCS 2765.

have been working with is representative and whether the participants are
representative of the target population.

• Conclusion: The conclusion validity is concerned with the possibility to draw
correct conclusions regarding the relationship between treatments and the outcome
of an experiment. Examples of issues to consider are whether the statistical power
of the tests is too low, or if the reliability of the measurements is high enough.

• Construct: The construct validity is related to the relationship between the concepts
and theories behind the experiment and what is measured and affected. Examples
of issues are whether the concepts are defined clearly enough before measurements
are defined, and interaction of different treatments when persons are involved in
more than one study.

Obviously, it is important to have these validity concerns in mind already when the

designing the experiment and in particular when using a specific design type. In the
analysis phase it is too late to change the experiment in order to obtain better validity.
The different validity threats should also be considered for the other type of empirical
studies discussed in the following sections.

When the analysis is completed the next step is to draw conclusions and take
actions based on the conclusions.

More in-depth descriptions of controlled experiments in a software engineering
context can be found in [18] and [20].

5 Case Study

5.1 Introduction

A case study is conducted to investigate a single entity or phenomenon within a
specific time space. The researcher collects detailed information on, for example, one
single project during a sustained period of time. During the performance of a case
study, a variety of different data collection procedures may be applied [4].

If we would like to compare two methods, it may be necessary to organize the
study as a case study or an experiment. The choice depends on the scale of the
evaluation. An example can be to use a pilot project to evaluate the effects of a
change compared to some baseline [6].

Case studies are very suitable for industrial evaluation of software engineering
methods and tools because they can avoid scale-up problems. The difference between
case studies and experiments is that experiments sample over the variables that are
being manipulated, while case studies sample from the variables representing the
typical situation. An advantage of case studies is that they are easier to plan but the
disadvantages are that the results are difficult to generalize and harder to interpret, i.e.
it is possible to show the effects in a typical situation, but it cannot be generalized to
every situation [14].

If the effect of a process change is very widespread, a case study is more suitable.
The effect of the change can only be assessed at a high level of abstraction because
the process change includes smaller and more detailed changes throughout the
development process [6]. Also, the effects of the change cannot be identified
immediately. For example, if we would like to know if a new design tool increases the
reliability, it may be necessary to wait until after delivery of the developed product to
assess the effects on operational failures.

Case study research is a standard method used for empirical studies in various
sciences such as sociology, medicine and psychology. Within software engineering,
case studies should not only be used to evaluate how or why certain phenomena

10(15)

In Empirical Methods and Studies in Software Engineering: Experiences from ESERNET, pp.
7-23, editors Reidar Conradi and Alf Inge Wang, Lecture Notes in Computer Science, Spinger-
Verlag, Germany, LNCS 2765.

occur, but also to evaluate the differences between, for example, two design methods.
This means in other words, to determine “which is best” of the two methods [14]. An
example of a case study in software engineering is an investigation if the use of
perspective-based reading increases the quality of requirements specifications. A
study like this cannot verify that perspective-based reading reduces the number of
faults that reaches test, since this requires a reference group that does not use
perspective-based techniques.

5.2 Case study arrangements

A case study can be applied as a comparative research strategy, comparing the results
of using one method or some form of manipulation, to the results of using another
approach. To avoid bias and to ensure internal validity, it is necessary to create a solid
base for assessing the results of the case study. There are three ways to arrange the
study to facilitate this [6].

A comparison of the results of using the new method against a company baseline is
one solution. The company should gather data from standard projects and calculate
characteristics like average productivity and defect rate. Then it is possible to
compare the results from the case study with the figures from the baseline.

A sister project can be chosen as a baseline. The project under study uses the new
method and the sister-project the current one. Both projects should have the same
characteristics, i.e. the projects must be comparable.

If the method applies to individual product components, it could be applied at
random to some components and not to others. This is very similar to an experiment,
but since the projects are not drawn at random from the population of all projects, it is
not an experiment.

5.3 Confounding factors and other aspects

When performing case studies it is necessary to minimize the effects of confounding
factors. A confounding factor is, as it is described in Section 4, a factor that makes it
impossible to distinguish the effects from two factors from each other. This is
important since we do not have the same control over a case study as in an
experiment. For example, it may be difficult to tell if a better result depends on the
tool or the experience of the user of the tool. Confounding effects could involve
problems with learning how to use a tool or method when trying to assess its benefits,
or using very enthusiastic or sceptical staff.

There are both pros and cons with case studies. Case studies are valuable because
they incorporate qualities that an experiment cannot visualize, for example, scale,
complexity, unpredictability, and dynamism. Some potential problems with case
studies are as follow.

A small or simplified case study is seldom a good instrument for discovering
software engineering principles and techniques. Increases in scale lead to changes in
the type of problems that become most indicative. In other words, the problem may be
different in a small case study and in a large case study, although the objective is to
study the same issues. For example, in a small case study the main problem may be
the actual technique being studied, and in a large case study the major problem may
be the amount of people involved and hence also the communication between people.

Researchers are not completely in control of a case study situation. This is good,
from one perspective, because unpredictable changes frequently tell them much about
the problems being studied. The problem is that we cannot be sure about the effects
due to confounding factors.

More information on case study research can be found in, for example, [12] and
[14].

11(15)

In Empirical Methods and Studies in Software Engineering: Experiences from ESERNET, pp.
7-23, editors Reidar Conradi and Alf Inge Wang, Lecture Notes in Computer Science, Spinger-
Verlag, Germany, LNCS 2765.

6 Survey

Surveys are conducted when the use of a technique or tool already has taken place
[13] or before it is introduced. It could be seen as a snapshot of the situation to
capture the current status. Surveys could, for example, be used for opinion polls and
market research.

When performing survey research the interest may be, for example, in studying
how a new development process has improved the developer’s attitudes towards
quality assurance. Then a sample of developers is selected from all the developers at
the company. A questionnaire is constructed to obtain information needed for the
research. The questionnaires are answered by the sample of developers. The infor-
mation collected is then arranged into a form that can be handled in a quantitative or
qualitative manner.

6.1 Survey characteristics

Sample surveys are almost never conducted to create an understanding of the par-
ticular sample. Instead, the purpose is to understand the population, from which the
sample was drawn [15]. For example, by interviewing 25 developers on what they
think about a new process, the opinion of the larger population of 100 developers in
the company can be predicted. Surveys aim at the development of generalized
suggestions.

Surveys have the ability to provide a large number of variables to evaluate, but it is
necessary to aim at obtaining the largest amount of understanding from the fewest
number of variables since this reduction also eases the analysis work.

It is not necessary to guess which the most relevant variables in the initial design of
the study are. The survey format allows the collection of many variables, which in
many cases may be quantified and processed by computers. This makes it is possible
to construct a variety of explanatory models and then select the one that best fits the
purposes of the investigation.

6.2 Survey purposes

The general objective for conducting a survey is either of the following [15]:
• Descriptive.
• Explanatory.
• Explorative.

Descriptive surveys can be conducted to enable assertions about some population.
This could be determining the distribution of certain characteristics or attributes. The
concern is not about why the observed distribution exists, rather what it is.

Explanatory surveys aim at making explanatory claims about the population. For
example, when studying how developers use a certain inspection technique, we might
want to explain why some developers prefer one technique while others prefer
another. By examining the relationships between different candidate techniques and
several explanatory variables, we may try to explain why developers choose one of
the techniques.

Finally, explorative surveys are used as a pre-study to a more thorough investi-
gation to assure that important issues are not foreseen. Creating a loosely structured
questionnaire and letting a sample from the population answer it could do this. The
information is gathered and analyzed, and the results are used to improve the full
investigation. In other words, the explorative survey does not answer the basic
research question, but it may provide new possibilities that could be analyzed and
should therefore be followed up in the more focused or thorough survey.

12(15)

In Empirical Methods and Studies in Software Engineering: Experiences from ESERNET, pp.
7-23, editors Reidar Conradi and Alf Inge Wang, Lecture Notes in Computer Science, Spinger-
Verlag, Germany, LNCS 2765.

6.3 Data collection

The two most common means for data collection are questionnaires and interviews
[15]. Questionnaires could both be provided in paper form or in some electronic form,
for example, e-mail or WWW pages. The basic method for data collection through
questionnaires is to send out the questionnaire together with instructions on how to fill
it in. The responding person answers the questionnaire and then returns it to the
researcher.

Letting interviewers handle the questionnaires (by telephone or face-to-face)
instead of the respondents themselves, offers a number of advantages:
• Interview surveys typically achieve higher response rates than, for example, mail

surveys.
• An interviewer generally decreases the number of “do not know” and “no answer”,

because he/she can answer questions about the questionnaire.
• It is possible for the interviewer to observe and ask questions.

The disadvantage is the cost and time, which depend on the size of the sample, and
they are also related to the intentions of the investigation.

7 Post-mortem analysis

Post-mortem analysis is a research method studying the past, but also focusing on the
typical situation that has occurred. Thus, a post-mortem analysis is similar to the case
study in terms of scope and to the survey in that it looks at the past. The basic idea
behind post-mortem analysis is to capture the knowledge and experience from a
specific case or activity after it has been finished. [21] identifies two types of post-
mortem analysis: a general post-mortem analysis capturing all available information
from an activity or a focused post-mortem analysis for a specific activity, for
example, cost estimation.

According to [21], post-mortem analysis has mainly been targeted at large software
projects to learn form their success or recovery from a failure. An example of such a
process is proposed by [22]. The steps are:

1. Project survey.
The objective is to use a survey to collect information about the project
from the participants. The use of a survey ensures that confidentiality can
be guaranteed.

2. Collect objective information.
In the second step, objective information that reveals the health of the
project is collected. This includes defect data, person-hours spent and so
forth.

3. Debriefing meeting.
A meeting is held to capture issues that where not covered by the survey.
In addition, it provides the project participants with an opportunity to
express their view.

4. Project history day.
The history day is conducted with a selected subset of the people involved
to review project events and project data.

5. Publish the results.
Finally, a report is published. The report is focused on the lessons-learned
and to use that to guide organisational improvement.

To support small- and medium-sized companies, [21] discusses a lightweight

approach to post-mortem analysis, which focuses on a few vital activities and
highlights that:

13(15)

In Empirical Methods and Studies in Software Engineering: Experiences from ESERNET, pp.
7-23, editors Reidar Conradi and Alf Inge Wang, Lecture Notes in Computer Science, Spinger-
Verlag, Germany, LNCS 2765.

• Post-mortem analyses should be open for participation for all team
members and other stakeholders,

• Goals may be used to focus the discussions, but it is not necessary,
• The post-mortem process consists of three main phases: preparation, data

collection and analysis. These phases are further discussed in [21].

Post-mortem analyses are a flexible type of analysis method. The actual object to

be studied (a whole project or specific activity) and the type of questions posed are
very much dependent on the actual situation and the objectives of the analysis.

The referenced articles or the book by Whitten [23] provide more information on
post-mortem analysis/review.

Finally, it should be noted that empirical methods also provide positive side effects
such knowledge sharing, which is an added-value from conducting an empirical
study. This is true for all types of empirical studies. In an experiment, the subjects
learn from comparing competing methods or techniques. This is particular true if the
subjects are debriefed afterwards in terms of obtaining information about the
objective and the outcome of the experiment. In case studies and post-mortem
analyses the persons participating obtain a new perspective of their work and they
often reflect on their way of working through the participation in the empirical study.
Finally, in the survey the learning comes from comparing answers given with the
general outcome of the survey. This allows individuals to put their own answers in a
more general context.

8 Summary

This chapter has provided a brief overview of four empirical research methods with a
primary focus on methods that contain some quantitative part. The four methods are:
controlled experiments, case studies, surveys and post-mortem analyses. The main
objective has been to introduce them so that people intending to conduct empirical
studies can make an appropriate selection of an empirical research method in a
software engineering context.

Moreover, the presented methods must be seen as complementary in that they can
be applied at different stages in the research process. This means that they can,
together in a suitable combination, support each other and hence provide a good basis
for sustainable improvement in software development.

9 References

[1] D. A. Garvin, “Building a Learning Organization”, in Harward Business Review on
Knowledge Management, pp. 47-80, Harward Business School Press, Boston, USA, 1998.

[2] V. R. Basili, G. Caldiera, and H. D. Rombach, ”Experience Factory” in Encyclopaedia of
Software Engineering, editor John J. Marciniak, John Wiley & Sons, Inc., Hoboken, N.J.,
USA, 2002.

[4] J. W. Creswell, Research Design, Qualitative and Quantitative Approaches, Sage
Publications, 1994.

[3] N. K. Denzin and Y. S. Lincoln, Handbook of Qualitative Research, Sage Publications,
London, UK, 1994.

[5] N. Fenton, and S. L. Pfleeger, Software Metrics: A Rigorous & Practical Approach, 2nd
edition, International Thomson Computer Press, 1996.

[6] B. Kitchenham, L. Pickard and S. L. Pfleeger, “Case Studies for Method and Tool
Evaluation”, IEEE Software, pp. 52-62, July 1995.

[7] D. C. Montgomery, Design and Analysis of Experiments, 4th edition, John Wiley & Sons,
New York, USA, 1997.

14(15)

In Empirical Methods and Studies in Software Engineering: Experiences from ESERNET, pp.
7-23, editors Reidar Conradi and Alf Inge Wang, Lecture Notes in Computer Science, Spinger-
Verlag, Germany, LNCS 2765.

15(15)

[8] S. Siegel, J. Castellan, Nonparametric Statistics for the Behavioral Sciences, 2nd edition,
McGraw-Hill International, New York, USA, 1988.

[9] C. Robson, Real World Research, 2nd edition, Blackwell, 2002.
[10] M. V. Zelkowitz and D. R. Wallace, “Experimental Models for Validating Technology”,

IEEE Computer, 31(5), pp. 23-31, 1998.
[11] B. F. J. Manly, Multivariate Statistical Methods - A Primer, Second Edition, Chapman &

Hall, London, 1994.
[12] R. E. Stake, The Art of Case Study Research, SAGE Publications, 1995.
[13] S. Pfleeger, “Experimental Design and Analysis in Software Engineering Part 1-5”, ACM

Sigsoft, Software Engineering Notes, Vol. 19, No. 4, pp. 16-20; Vol. 20, No. 1, pp. 22-26;
Vol. 20, No. 2, pp. 14-16; Vol. 20, No. 3, pp. 13-15; and Vol. 20, No. 4, pp. 14-17, 1994-
1995.

[14] R. K. Yin, Case Study Research Design and Methods, Sage Publications, Beverly Hills,
California, 1994.

[15] E. Babbie, Survey Research Methods, Wadsworth, ISBN 0-524-12672-3, 1990.
[16] J. W. Tukey, Exploratory Data Analysis, Addison-Wesley, 1977.
[17] C. Robson, Design and Statistics in Psychology, 3rd edition, Penguin Books, London,

England, 1994.
[18] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell and A. Wesslén,

Experimentation in Software Engineering – An Introduction, Kluwer Academic Publishers,
Boston, MA, USA, 1999.

[19] C. M. Judd, E. R. Smith and L .H. Kidder, Research Methods in Social Relations, Harcourt
Brace Jovanovich College Publishers, Forth Worth, Texas, USA6th Edition, 1991

[20] N. Juristo and A. Moreno, Basics of Software Engineering Experimentation, Kluwer
Academic Publishers, Boston, Massachusetts, USA, 2001.

[21] A. Birk, T. Dingsøyr and T. Stålhane, “Postmortem: Never Leave a Project without It”,
IEEE Software, pp. 43-45, May/June 2002.

[22] B. Collier, T. DeMarco and P. Fearey, “A Defined Process for Project Postmortem
Review”, IEEE Software, pp. 65-72, July 1996.

[23] N. Whitten, Managing Software Development Projects - Formula for Success, John Wiley
and Sons, Inc., New York, USA, 1995.

