
Capture-recapture in Software Unit Testing –
A Case Study

Hanna Scott
School of Engineering

Blekinge Institute of Technology
SE-37225 Ronneby, Sweden

+46 457 385883

Hanna.scott@bth.se

 Claes Wohlin
School of Engineering

Blekinge Institute of Technology
SE-372 25 Ronneby, Sweden

+46 457 385800

Claes.wohlin@bth.se

ABSTRACT
Quantitative failure estimates for software systems are
traditionally made at end of testing using software reliability
growth modeling. A persistent problem with most kinds of
failure estimation methods and models is the dependency on
historical data. This paper presents a method for estimating
the total amount of failures possible to provoke from a unit,
without historical data dependency. The method combines
the results from having several developers testing the same
unit with capture-recapture models to create an estimate of
“remaining” number of failures. The evaluation of the
approach consists of two steps: first a pre-study where the
tools and methods are tested in a large open source project,
followed by an add-on to a project at a medium sized
software company. The evaluation was a success. An
estimate was created, and it can be used both as a quality
gatekeeper for units and input to functional and system
testing.

Keywords

Unit test, capture-recapture, prediction, faults, failures

1. INTRODUCTION
Capture-recapture was initially a method applied in biology. It has
then been transferred to software engineering to be used in
software inspections and testing. In biology, capture-recapture is
used to estimate animal populations, for example, the number of
deer in the woods, and it is also used in medical research [1]. In
software engineering, capture-recapture methods have been used
for fault seeding methods [2]. By seeding fault, and comparing the
number of faults found that was seeded and non-seeded faults, the
number of remaining faults can be estimated. Later, capture-
recapture was applied in software inspections to estimate the
number of remaining faults. The first application of capture-
recapture on software inspections was published in 1992 by Eick
et al. [3]. A survey of the capture-recapture in software

inspections is provided in [4]. Capture-recapture has also been
applied in different ways in testing [5, 6].

In software engineering, capture-recapture can be described as a
method that uses the overlap between inspectors or testers to
estimate the remaining number of faults. The overall hypothesis is
that if, for example, several testers have a large overlap in what
they find then few faults are probably remaining. A similar
reasoning can be used if the overlap is small between the different
testers. Different statistical methods can be used to make the
estimation.

To the best of our knowledge, capture-recapture has not been
applied in software unit testing in the way reported here. The
application of capture-recapture in unit testing has two objectives.
First of all, it can be used for quality control. In other words, as a
gatekeeper to ensure that whatever we pass on to the following
test phases is of sufficient quality. Second, it can be used as a
method to try to estimate the remaining number of faults as such.
Thus, the objective of this paper is to illustrate through an
industrial case study how capture-recapture is possible to apply to
software unit testing to obtain an estimate of the remaining
number of faults. The design of the case study is presented in
detail together with findings from a pre-study conducted on an
open source project and the main study conducted at a company.

The study shows that it is possible to estimate the number of
remaining faults. The additional costs for introducing parallel
testing of software units are reported. The study provides input to
companies to judge whether parallel unit testing is a way forward
to get a better hold on the software quality early in the testing
activities.

The paper is structured as follows. Section 2 presents related
work. The case study is presented in Section 3, where the context,
design, execution, threats and results are presented. A discussion
is provided in Section 4. Finally, Section 5 presents the main
conclusions from the study.

2. RELATED WORK
The related work of this paper contains two main sections. The
information and research on combining unit test results with
capture-recapture is sparse, hence the related work starts with the
use of capture-recapture in software inspections, then moves on to
related works in capture-recapture applied to unit tests.

2.1 Capture-recapture in inspections
 Capture-recapture estimations are based on the assumption that
the overlaps between the number of animals captured the first,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

second and third time are inversely proportional to the amount of
animals not captured at all. The fewer the number of animals in
the overlap, the larger the number of animals not captured at all.

The main difference of applying capture-recapture in software
inspections, compared to biology, is the data collection method.
The method is serial in biology and simultaneous in inspections.

There are four main models to use for estimation as part of the
capture-recapture methods usually referred to as capture-recapture
models M0, Mh, Mt and Mth [4]. The differences between models
are the basic assumptions of how the world works, and in
particular the probabilities of faults being detected and the ability
of reviewers to detect them [4]. The four capture-recapture
models’ with varying assumptions are:

M0 assumes that the probability of a fault being found is the same
for all faults, and that the ability of the inspectors to find each
fault is also the same.

Mh also assumes that the probability of a fault being found is the
same for all faults, but it assumes that the detection ability can
vary from inspector to inspector.

Mt here the assumption is that the probability of faults being
found varies, but that the inspectors all have the same ability to
find each fault.

Mth makes neither an assumption about probabilities being the
same for faults nor for inspectors, i.e. the probability of faults
being found can vary, and the ability to find each fault can vary
from inspector to inspector.

When using a capture-recapture model in practice, the model
needs to be complemented with an approach to predict the number
of remaining faults. The approach, or formula, is generally called
an estimator [4]. The three most common estimators today are:
Maximum likelihood (ML), Chao’s estimator (Ch) and Jackknife
(JK). The combination of model and estimator that has had the
greatest success in software inspections is Mh with the Jackknife
estimator (Mh-JK) [4]. There are different orders of estimators for
the Jackknife method and according to both Miller and Thelin et
al. the second order Jackknife estimator performs best [7].

An overview of how Mh-JK has performed in the past on software
inspection data is presented in Table 1. The results are presented
as Mean Magnitude of Relative Error (MMRE) measurements in
order to give a better overview. The MMRE measurement has a
tendency to underestimate in comparison to the mean, and it also
has a high probability of selecting a model that has a bad fit to the
data [8], but since most papers in the area were written before
2003 when the critique of MMRE was published the contents of
Table 1 still uses this measurement. Usually a combination of
model and estimator is considered reasonably accurate when it has
a bias in the approximate range of ±20% [9, 10].

Thelin’s [7] results in Table 1 were not originally written as an
MMRE measurement but in order to be able to compare the
results with that of Petersson et al. [11] and Briand et al. [10] the
data available in [7] has been transformed into MMRE. The
results in [10] and [4] are available as MMRE.

Current work in the area of applying capture-recapture on
software inspection data mainly consists of comparing the method
to other methods of estimation [4]. There is still no agreement on
whether or not the capture-recapture method outperforms
subjective estimates, but the two methods seem to have similar
performance [7, 11]. There is also an interesting trend of

evaluating the stability of estimations using the capture-recapture
method [12, 13].

Table 1. Example of performance of Mh-JK in inspections

Researchers No. of
Insp.

No. of subjects MMRE
in %

Thelin [7]* 3 34 BSc stud -16

Petersson et al. [4] 3 Simulation 19

Thelin [7]* 3 48 MSc stud 21

Petersson et al. [4] 4 Simulation 28

Briand et al. [10] 3 14(13) professionals 28

Briand et al. [10] 2 12 professionals -52

Petersson et al. [4] 4 Simulation -64

Petersson et al. [4] 3 Simulation -72

2.2 Capture-recapture in testing
When applying the capture-recapture method on failure data from
testing there is one thing that needs to be kept in mind: the
artifact, being the code in execution, changes faster than other
artifacts. In order to give a representative picture of the test
process it is important that failures of type “test stoppers” are
allowed to be removed. This means that the artifact being
scrutinized is being changed while the testing is being done. Since
the code is in execution and works together with other programs
and underlying platforms, a failure can be caused by factors other
than the artifact under scrutiny. Thus, the best combination of
capture-recapture model and estimator may very well be different
in testing than the ones found to be most suitable in different
inspection studies.

There are few results from applying capture-recapture to test data,
but there are at least two, one by Stringfellow et al. [5] and one by
Yang et al. [6]. In the study by Stringfellow et al, the objective
was to estimate which units that can be expected to contain faults
in operation even if faults were not found in testing. In other
words, the study was not focused on estimating faults as is the
goal in our paper. The results from the Stringfellow et al. analysis
show that the capture-recapture model and estimator combination
seems different, even if the Mh-JK estimator is within acceptable
range in testing as well as in inspections [5]. The capture-
recapture models that perform within an acceptable level of the
subjective estimates in the Stringfellow et al. study are: Mt-ML,
M0-ML and Mh-JK [5]. Given that the objective here is not to
compare different capture-recapture models and estimators, a
selection of models and estimators to use had to be made. As
these three estimators have performed well previously when used
with test data, these estimators are used in this study and therefore
require some additional explanation. Furthermore, at least the Mt-
ML and Mh-JK models and estimators have been among the most
successful in inspections studies as well [4]. Another similarity to
inspections is that the subjective estimates perform very well, but
that the capture-recapture models seems to have similar
performance to the subjective estimates [5].

The Yang et al. [6] investigation tries to determine when to stop
testing through estimating “defects” found in test using, among

other techniques, recapture debugging. Recapture debugging is
built on the existence of reported duplicates in testing, and
different failures that can be traced back to the same root cause.
Yang et al. look at examined “defect” capture-recapture, i.e. they
investigated the root causes of the failures instead of looking at
the failures themselves as separate occurrences [6]. The study
found that using capture-recapture to determine when to stop
testing is only superseded by the optimal test stop criteria, which
is defined as “when it becomes cheaper to fix a defect in
maintenance than in test” [6].

3. CASE STUDY
The case study presented in this paper aims to evaluate if it is
possible to use capture-recapture to estimate the number of
remaining faults after unit testing. The case study is conducted by
having several testers performing unit testing on the same unit,
ideally in parallel. In other words, testing is conducted in a similar
way as individual reading in inspections. The case study is
conducted as an extra test activity. This is done for two main
reasons. First of all, this is a pilot study and hence it is not
integrated into the normal development process. Second, the study
is conducted after the unit test prescribed in the development
process is done. The latter has one major advantage. The quality
of the unit is higher, which means that failures of type “test
stoppers” have been removed and several testers do not have to
find the same “simple” failures.

It is important to point out that our application of capture-
recapture in unit testing has several different goals. First, the
company should evaluate whether the use of capture-recapture is a
useful step to assure quality of individual units and to help in
planning of the remaining test phases based on the failure
estimates. Second, even if the company decides not to use this
approach for all units, it will be evaluated whether it can be
applied for some units to obtain an estimate of the total number of
remaining failures in a subsystem. The latter requires that a
representative unit is selected, i.e. a unit that is estimated to have
an average number of failures in relation to the other units in the
subsystem. This objective resulted in an extra step in the case
study, since capture-recapture study should be applied to a
“representative” unit.
The presentation of the case study is divided into five parts:
context, design, execution, validity and result of the study.

3.1 Context
This case study was made in two different environments. In the
pre-study, the environment is the Open Source project called
KDE. The pre-study was presented in a news article for the KDE
community, and anyone could sign up for the study. The KDE
community is a voluntary-based development community, which
usually means that people will participate in the activities they
enjoy. The voluntary basis also meant that among the people who
signed up for the pre-study and participated in answering the pre-
test questionnaire, only 7% chose to participate in the actual test
part of the study. This is further discussed in Section 3.3.1.

The main study was conducted at a medium sized software
company named UIQ Technology, with a total of 366 employees,
of which 98 are developers. The company develops Symbian C++
software for mobile phones, so a lot of their software is aimed at a
very diverse mass market. The development is in the process of
being phased from traditional waterfall development approach to
incremental software development process applying test-driven

development. UIQ Technology employs outsourcing on a regular
basis, partly because they are investigating if outsourcing can save
resources, and partly since the demand for mobile software is
increasing there is a shortage of software developers in Sweden
today. The outsourced software is usually one component from
the baseline maintained at the company. This case study was
performed at UIQ Technology because it was agreed that it would
help the main organization if they could tell how many faults the
outsourced components contain when they arrive for integration
into the baseline. In other words, there was a high demand for
finding ways to obtain earlier estimates of software quality, and in
particular to have a better control on the quality of components
that are part of the outsourcing.

3.2 Design
This section contains a description of the case study design for
applying capture-recapture to failure data from unit tests. The
study design is divided into two phases with eight distinct steps
each. The first phase is a pre-study and the second phase is the
main study. The pre-study is conducted to evaluate the steps and
to ensure that the likelihood for success of the case study at the
company is maximized. The eight steps of the design are:

1. Select a unit for testing
2. Pre-test questionnaire handout to developers
3. Selection of four developers
4. Parallel unit test execution
5. Participants’ subjective estimates
6. Meeting to define failures and overlap
7. Capture-recapture calculations on representative unit
8. Inform all involved of study results.

Each design steps is described in more detail in the following
subsections.

3.2.1 Select a unit for testing
In order to find a unit with failure representative traits the units
need to be measured. This means that a data extraction is needed
followed by an analysis of the data. A number of metrics are
extracted from two releases of the same software product. The
intention is to identify measurements that correlate with number
of provoked failures from an old release of the project, and then
use the same measurements in the current release to identify a
“representative” unit to use in the capture-recapture study. This is
done by using the failure correlation measurements from the old
release together with the metrics measurements from the new
release to create a representative conceptual unit with the median
values of all measurements. The unit with values closest to the
conceptual unit is then selected for being used in the study.

3.2.2 Pre-test questionnaire handout to developers
A list of potential participants in the study is created. The people
on the list are asked to complete a questionnaire. The
questionnaire asks about their programming and testing skills, as
well as motivation level. This step is done to ensure that the
subjects chosen for the study are representative of developers at
the company.

3.2.3 Selection of four developers
The answers from the questionnaire are used to determine the
median skill level of the entire group, and select four developers
in the immediate vicinity of the median to perform the parallel
testing. The questionnaire answer options are Likert scale
alternatives. The analysis consists of prioritizing the questions
according the believed impact of the answers to the parallel
testing. For each question, the most selected answer option is
considered the median value of the group. When selecting suitable
participants for the study, the priority of a question is taken into
account. The higher the priority of a question, the more important
it was the developers selected had provided an answer that was
equivalent to the median of the group.

It is important to point out, that the people, who already had
expertise or experience with the component to be tested, were
excluded from the group of potential participants to avoid bias in
the results.

The four developers are briefed about the details of the study a
few days before the parallel test session via e-mail, or if possible,
face-to-face. The briefing includes: a description of goal of the
capture-recapture study and their role in the study. The potential
gains are also described.

3.2.4 Parallel unit test execution
The four developers are expected to test the same unit. The testing
is done in parallel. While performing the tests they are to note
activities, activity switches, failures found, time each failure was
found, how each failure was provoked and the symptom of each
failure.

In order to make sure the unit testing is going as planned the main
researcher collects verbal, individual feedback from the
participating developers three hours into the unit test. This could
potentially cause changes to the design during execution of the
case study.

3.2.5 Participants’ subjective estimates
At the end of the parallel tests, each of the four developers
provide his or her subjective estimate of how many more failures
they think they would be able to provoke if given as much
additional test time as they wish. This is viewed as an estimate of
the remaining number of failures in the unit.

3.2.6 Meeting to define failures and overlap
The four developers have a meeting with the main researcher
performing the study (main author of the paper), where the
developers discuss all “failures” noted during the parallel tests,
and then decide what constitutes a failure. In this meeting, the
overlap matrix for the failures is determined. At the end of the
meeting the participants perform an open-ended qualitative
evaluation of the study’s different aspects.

3.2.7 Capture-recapture calculations on
representative unit
The main researcher performs the capture-recapture estimations
for all combinations of all possible groups. The models used are
M0, Mt and Mh, and the estimators are both Maximum
Likelihood and Jackknife. The combinations used in this study are
the ones that showed promise in the Stringfellow et al. study [5]:
Mt-ML, M0-ML and Mh-JK. Note that the Mh model assumes
that the detection ability of the developers are different, and the
developers are selected based on the median. The use of the Mh

model is still relevant, because the pre-test questions might not be
able to catch what constitutes different detection abilities between
developers.

3.2.8 Inform all involved of study results
The results of the study should be presented at a meeting with the
entire group of possible participants, i.e. the people who
participated in the testing and their managers. This step is
important in many ways. It gives the company representatives a
sense of participation, and it explains to them what happened to
their invested hours. Furthermore it increases the visibility of the
researcher at the company for future investigations and it is a first
step toward creating a company opinion about the approach.

3.3 Execution
 The execution of the study is reported in several steps. In the next
section, the execution of the pre-study is reported. The following
sections describe each of eight steps in the design for the main
study.

3.3.1 Pre-study of the capture-recapture study
The study execution was preceded by a pre-study, made on the
KDE Open Source project. The pre-study was intended to
encompass the eight steps in the design for evaluation purposes.
An invitation was sent out and the interest for the study was much
higher than expected among the developers of KDE. The study
started off with 41 developers answering the pre-test questionnaire
on skills. Out of the 41 developers who answered the pre-test
questionnaire, only three handed in a result from the unit testing
part of the study. The three results handed in for analysis did not
contain any overlap, hence the pre-study could not produce an
estimate since some overlap is a prerequisite to make the capture-
recapture models work (in terms of producing an estimate). There
was a qualitative evaluation on what went wrong among all 41
initial participants. Among the developers who did not hand in
their unit test package, nine gave qualitative feedback on the
following questions:
a) Why did you not proceed /finish the unit test part of the

study?

b) Do you have any other general feedback on the pre-
study?

The feedback clearly showed that all the developers could not find
enough time for the five-hour time slot needed to perform the unit
test. Four developers also stated that they ran into scheduling
problems, due to that the date for the study was moved two weeks.
The move was due to difficulties finding someone to write
documentation for the selected unit to test. Two developers stated
that they simply realized they did not have enough skills to
complete the unit tests.

The three developers, who did hand in their unit test package,
were asked the following questions:

a) Why do you think so few of the initially interested
participants did not proceed/finish the unit test part of
the study?

b) What parts of the unit test parts of the study do you
think could be improved and how?

The answers from the developers showed that the main problem
with the study was the time it took to set up the test environment
and create their own test harness from scratch.

As a direct result of the test run of the capture-recapture pre-study
on the KDE Open Source project, the tasks of “Write code
documentation and test driver template” were added to the design
step “Selection of four developers”.
3.3.2 Select a representative unit.
The experiences from the pre-study were important inputs to the
main study. The first step was to find a representative unit, all
units first needed to be measured to get an overview of the unit set
of the entire outsourced subsystem. The main researcher
performed the data extraction. The approach was determined over
a six-month period of time. This created some challenges since
projects are very dynamic and in this particular case the project,
and hence the potential units to use, were changed three times. In
the end, data was extracted from one old subsystem of the system
delivered from the subcontractor selected (the development was
outsourced), and from a new subsystem from the same outsource
company that had just been delivered. The measurements
collected were:

• Number of times the cpp files was updated (cpp denotes a
code file that contains the implementation of functionality)

• Number of times the h files was updated (h denotes a header
code file, meaning the file where the functionality for the cpp
files are declared)

• Source Lines of Code (SLOC) in cpp
• Commented Lines of Code (CLOC) in cpp
• Simple outbound function calls (MPC)
• Simple inbound function calls
• Complex indirect outbound function calls
• Complex indirect inbound function calls
• Number of C++ classes in the unit
• Number of functions in the C++ unit
• Number of members in the C++ unit
• SLOC in header files of the unit
• CLOC in header files of the unit
• Number of types in calls

The old subsystem had 28 units, with only three failures reported
to two units. This meant that we were unable to determine how
well or badly the number of failures correlated with these
measurements. It is, however, known that all of these
measurements have shown to be highly correlated with the
number of faults in other research studies [14,15], so we still
created a conceptual unit based on the median value of all
measurements. The unit with the closest actual values to those of
the conceptual unit was chosen for the study.
Finding a representative unit took about eleven hours. These
eleven hours include analysis of the data collected in the form of
normality tests and correlation analysis. The time does not include
the overhead of setting up and using parsing tools or re-extraction
time when the projects were changed etc.

3.3.3 Pre-test questionnaire handout to developers
The pre-test questionnaire was handed out to 27 developers in
total. The lead-time for collecting all questionnaires was about a
month, because some developers went vacation, others came back
from vacation, and some got sick.

One of the developers was not on site during when the first batch
of questionnaires were handed out, so he answered the
questionnaire about a week after the rest of the development
department.

The two last developers to perform the unit tests answered the
questionnaire about one month after the rest of the group of
developers.

The spontaneous feedback given by about a fourth of the
developers who answered the questionnaire was that some of the
questions were hard to understand. It was however judged that
these difficulties did not affect the actual selection in the next
step.

3.3.4 Selection of four developers
Some problems were found when doing the analysis of the
answers from the questionnaire. The answers revealed that the
company had two large and very different groups of developers
when it comes to skills and motivation. It should be noted that the
motivation factors of the pre-test only refer to the willingness to
participate in the study. Since the company had two different skill
and motivational groups, half of the candidates were selected from
each group. The candidates were selected based on the most
frequently occurring answers to the questionnaire questions,
within each skill and motivational group.

In order to avoid having to redo the selection again, in case some
of the developers’ chosen were assigned to other departments
temporarily or such, the selection contained six primary
candidates, and four secondary candidates.
In the end, it was discovered that two out of the first four
candidates were not able to perform the tests because a vital skill
required to carry out the tests was forgotten in the pre-test
questionnaire. In the end this meant that two out of the four
developers whose results qualified were not selected using median
answers on the pre-test questionnaire. The last two developers
were chosen based on their pretest but with the additional
information on their knowledge of a specific tool used in the unit
testing. This is further discussed in the validity section under 3.4.

Based on the outcome of the pre-study, two new tasks were added
in comparison to the initial design of the study. The added tasks
were:
Task 1: Write code documentation and test driver template

• The code documentation on the selected unit should be
complemented where needed. This is important since a
failure is a deviation from the required behaviour hence for
the developers need to understand as exactly as possible the
intended behavior of the unit being tested.

• A test driver needs to be created for the unit test session. The
template should be empty, but contain all dependencies on
needed code units that will allow the code to be run, but
nothing more in order not to guide developers too much in
their testing.

Task 2: Set up of test environment:

There should either be extra time for the developers to set up their
test environment or make sure there is another person who can set
up the test environment quite quickly, and answer any questions
regarding it that the developers might have. For this case study the
person responsible for the integration and test of the component
was called in to set up the test environment.

3.3.5 Parallel unit test execution
The parallel unit testing was divided into two sessions. The first
two developers carried out the first unit test session about two
weeks after the pre-test questionnaires had been handed in. The
two last developers performed the second unit test session about
two weeks after the first session. The sessions were carried out in
the same way. The subjects in the study were informed about the
necessity not to share any experiences until all four developers
had performed the unit test. Before the test, the developers
gathered for one hour information meeting in the morning, and
then they had seven hours to perform the testing. Three hours into
the unit tests execution, the main researcher collected feedback
from the participants on how the testing was proceeding. The
feedback from the developers stated that they were having
problems understanding the dependencies of the unit. This caused
a change to a different test harness when two hours of unit tests
remained. The first test driver was provided from the beginning of
the testing sessions, and it was empty so they could fill it up
themselves. A second test driver template was provided when two
hours of the test remained due to feedback from the participants.
The developers said would be much easier to extend already
existing flow test cases. The implications of adding a second test
harness was considered for two hours, because it was vital not to
guide the developers too much during the unit testing. It was
decided it was worth the risk since the addition could at most
cause the developers to miss failures caused by non-allowed
execution sequences, and it was not possible for end users to
manipulate the unit in this way.

The outsource company that developed the subsystem used in the
study provided the latter test harness when the code for the
subsystem was delivered. The test harness consisted of extendable
basic flow tests.

3.3.6 Participants’ subjective estimates
Two of the four developers provided subjective estimates of the
number of remaining failures. One developer estimated four
failures to be left, and the other one estimated five failures to be
left. In both cases this meant that they estimated a total failure
contents before test to be six failures.

3.3.7 Meeting to define failures and overlap
This meeting went according to plan. The meeting took about one
hour, and included: a discussion on which of the reported failures
could actually be seen as failures, defining overlaps among the
found failures and lastly, general, unstructured qualitative
feedback on the entire study up until this meeting. The results of
the overlap analysis can be seen in Table 2.

The qualitative feedback from the developers on the study was as
follows:

• The documentation of the code was an insufficient basis on
which to specify test cases from scratch. The developers all
agreed that if the documentation is good enough, the meeting
for defining the overlap might not be necessary.

• The documentation in the flow test case harness provided
during the last two hours of test, had too poor documentation.
The developers suggested the use of Doxygen [17] and
Docbook [18] style documentation.

• The empty test harness provided from the beginning of the
test sessions contained bugs, so for future studies or actual
use of the approach the test harnesses should be tested
properly before the test sessions begin.

• A set-up description of the test environment should have
been included. Even though the developers had used the test
framework before, setting up the correct test conditions for
the specific unit still took 2-3 hours for each of the
developers.

• There was a suggestion that a time period would be set aside
for the participants, during which they could focus on getting
familiarized with the code, without feeling pressure to start
testing.

3.3.8 Capture-recapture calculations on
representative unit
The capture-recapture calculations were performed in Matlab. The
results can be seen in Table 3.

3.3.9 Inform all involved of study results
The meeting was conveyed to the team leaders of the teams that
provided the developers. The developers themselves were invited
to the meeting but chose not to participate. The study results were
well received, and now the company is considering implementing
a large-scale pilot evaluation of the method.
3.4 Validity
The validity of the case study presented in this paper can be
viewed in two different ways: design validity and validity of the
results.

The adaptation of the design done at the execution stage to fit
reality at the company that could have an effect on the validity of
the results can be summarized as follows:

• The change of selection for the last two developers according
to an additional criterion may be a validity threat to the
generalization of the applicability of the approach within the
software company itself.

• There were no resources available to improve the
documentation on the unit selected for testing so the testing
was performed on code with partially incomplete
documentation. This may have resulted in fewer failures
being detected than if the documentation would have been
better.

• Because of a misunderstanding of the term “unit test” in the
pre-test questionnaire, two of the four developers originally
selected were found not have the experience needed to
perform the unit testing, hence only two out of four selected
developers could produce a result which qualified for the
estimate calculations. To resolve the problem two additional
developers were selected to do the unit test. A second unit
test session was scheduled. The second session took place
about two weeks after the first session, where the
participants’ experience of unit tests had been established
before hand. After the first test session, the participants of
that session were instructed not to discuss their findings or
the study with other developers at the company until after the

second test session had been completed. However, whether
or not this rule was followed cannot be known.

Performing a pre-study has increased the validity of the case study
design presented in Section 3.2. However, some additions and
changes to the design is part of the outcome of the main case
study as well. These are the changes, which should be made to the
design before the study is run again:
• The pre-test questionnaire needs to be modified.

• The flow test case harness will be used from the beginning of
the test session. The addition was a result of feedback from
the developers while the unit testing was being done, and it
showed a much higher rate of failure provocation than the
use of the first, empty test harness.

• A description on how to set up the test environment should
be included in the test kit.

• The requirement on the participants to provide a subjective
estimate of remaining failures at the end of unit testing needs
to be stated more clearly.

3.5 Results
The outcome of the capture-recapture study is presented in Table
2. In total, the four developers (denoted D1 to D4) found five
failures in unit testing (denoted F1 to F5). Having failures marked
by “X” in grey cells shows failures found by the reviewers. It is
somewhat surprising to see the relatively small overlap. For
example, even if D1 and D2 together find all five failures
identified in the study, there is no overlap between them. The data
in Table 2 can be used to estimate the total number of failures and
in particular the number of remaining failures using the capture-
recapture models and the estimators listed in Section 2.

From Table 2, it is possible to make estimates based on two, three
or four developers. From a cost perspective, it would be preferable
if as few developers as possible are used. However, it is of course
important to find as many failures as possible too and to be able to
make trustworthy estimations. For example, on the one hand D1
and D2 find five failures together, which is very good. On the
other hand, it is impossible to make an estimate and the lack of
overlap between them indicates that several failures are
remaining. The estimates for all possible combinations of
developers using different capture-recapture models and
estimators are shown in Table 3.

Table 2. Overlap of the failures found in the unit test session

 D1 D2 D3 D4

F1 X X

F2 X

F3 X X

F4 X

F5 X

The first column shows the different combinations of developers
where it is possible to get an estimate. Some overlap is required to
get an estimate. The estimates in Table 3 show an estimate of the
total number of failures, i.e. including those found in the unit test.
It can be noted that the estimates for two developers (D1, D3 and
D2, D4) are low. This is due to that estimations are only possible
for two groups with no overlap between them. In other words,

developers D1 and D3 together only found two failures and
developers D2 and D4 only found three failures. When moving to
three developers, the estimates become higher and closer to the
estimate obtained for four developers. The only exception is the
estimate for three developers when developer D2 is excluded.

Unfortunately, the actual number of failures is unknown and
hence the estimates cannot be compared with an actual value. The
estimates shown in Table 3 are for the three different models with
different estimators. The models are rather consistent and looking
at the estimates it is reasonable to state that the total number of
failures in the unit is 7-8 failures, which means that it is estimated
that 2-3 failures are remaining after the study. 7-8 failures are
considered the result of the estimation because the median values
for the groups containing three or four developers are 7.23 and
7.67. The groups of three to four developers were used as the
primary estimators of the actual number of failures, since the
more developers the more reliable the result.
The estimates from the models could be compared with the
subjective estimates provided by two of the developers. Both
these developers estimated the total number of failures to be six.
Thus, the estimates of the models and developers are close to each
other, which provides some support for the results of the
estimations.

Unfortunately, it was impossible to compare the estimates from
the capture-recapture models and the subjective estimates with the
actual outcome, since this information is not available.

Table 3. Capture-recapture model estimate results for all
possible group combination

Testers Mt-
ML

M0-
ML

Mh-
JK1

Mh-
JK2

Mh-
JK3

1,3 2 2 2.5

2,4 3 3 4

1,2,3 8 9 7.67 8.83

2,3,4 4 6 6 6.83

1,2,4 8 9 7.67 8.83

1,3,4 3 3 4.33 4.83

1,2,3,4 6 6 7.25 8.08 8.83

4. COMPANY IMPLEMENTATION
Applying capture-recapture to unit testing provides two main
possible uses. First of all, the estimates could be used as quality
control, i.e. as a gatekeeper to decide whether a specific unit could
be transferred to forthcoming test phases or if more unit-testing is
needed, or even if the unit should be sent back to development.
Second, the estimate provides information about the potentially
remaining number of failures and hence this information can be
used to plan testing activities. It can be used to direct resources
both in terms of person-hours and where in the system to put most
testing resources.

In this particular case, the main organization gets information
about the quality of the outsourced software that it did not have
before. The estimate provides information that can be used to
decide whether or not to integrate the component into the baseline
at the current quality level it exhibits.

An important question for the company is the actual cost in
comparison to the potential gains. In this case the main researcher
conducted some of the work. However, the case study did incur
some costs for the company too. The costs for the company are
shown in Table 4, where it can be seen that the total cost was 51
hours.
The developers estimated that the use of the second test harness
would allow the testing to be done in just four hours per
developer. An analysis of the results from a budget perspective
was conducted within UIQ Technology. The analysis showed that,
if the failures found are in need of corrective action, the cost of
the study is outweighed by the time saved on system testing later
on in the project. The results were calculated for the UIQ context,
using four hours of testing per developer, and the amount of
failures being the same as in the study. For UIQ Technology, it
means that they would get the additional information of the
estimation without any additional costs to the development
projects.

Table 4. Company investment for the add-on

Time in
hours

Activities

10 Person hours for all developers to fill in the
questionnaire

1 Creation of first test harness

2 Developer to help set up test environment

6 Meeting to prepare developers for unit test

28 Developers performed unit tests

4 Hours to determine failure overlaps and evaluate
the study

Total
51

Company investment

In addition, the researchers invested time in the case study. The
total number of hours is shown in Table 5.

Table 5. Transferable tasks

Time in
hours

Activities

80 Extraction of all module measurements

1 Selection of the module to test

8 Coordinating the questionnaire collection.

14 Selection of the developers to perform the unit
tests

9 Coordinate the unit tests

1 Coordinating the evaluation meeting

1 Performed capture-recapture estimate calculations

Total
106

All activities, which could be transferred from the
researcher to the company.

It is important to stress that the largest cost is related to the
extraction of measurements, which is needed to select a
representative unit. This cost only occurs if the aim is to identify

and representative unit. If the intention is to perform this type of
quality control on all units then the costs in both Tables 4 and 5
have to be adapted to this. In other words, it should be
remembered that the costs here are for one unit. However, the
costs may become lower as we learn how to conduct these types
of studies.
In order for UIQ Technology to get general use of the method, the
tasks above have to be done by company personnel. The
extraction of measurements was done manually due to certain
features of the programming language that made automation
difficult. The extraction can be automated, but at a cost of around
two full time weeks of implementation. The same automation took
about two full weeks to implement for C++ in the pre-study.

4.1 Use of results
The estimate produced can be used as a basis to make the decision
to integrate the outsourced component or not. The use of the
method is not limited to outsourced components, but could
potentially be used to estimate the “failure contents” of in-house
components as well. The method could also be used on
components before release to the customer, in order to sample the
quality level of the final product. If applied just before delivery,
the resulting estimate could help determine the size of the
project’s maintenance budget, if the sampled component could be
proven to be representative for the system in some sense.

5. CONCLUSIONS
The contribution of this paper is the unique combination of the
results from unit tests with capture-recapture calculation models.
The results of this case study were positive. The method’s
different parts were evaluated for applicability on a real software
project. The capture-recapture on unit tests is a method that is
applicable in a commercial software company environment. The
method is very cost efficient in the sense that it both finds failures
and provides information to make an estimate of the remaining
number of failures in a unit. It is however very important not to
perform the unit testing to early, to avoid “show stopper” faults.
In the case study, this was secured by performing the parallel unit
testing after the unit test included in the development process at
the company. An estimate was created from this case study. The
resulting estimate is comparable with the subjective estimates of
the participants. The estimate itself can be used to control the
actual quality of a unit and as information for further planning of
testing activities.

ACKNOWLEDGMENTS
Special thanks to Dr. Thomas Thelin for providing the Matlab
files for the calculations.

We would also like to thank UIQ Technology staff who made this
study possible.
A big thank you to the KDE project for the support they gave the
pre-study, and especially Till Adam and Matthias Kalle
Dahlheimer at Klarälvdalens Datakonsult AB (KDAB).

This work was partly funded by The Knowledge Foundation in
Sweden under a research grant for the project "Blekinge -
Engineering Software Qualities (BESQ)"
(http://www.bth.se/besq).

REFERENCES

[1] Anne Chao, 1998. Capture-Recapture Models,
Encyclopaedia of Biostatistics, Editors: Armitage & Colton,
Wiley, New York.

[2] Harlan D. Mills, 1972. On the Statistical Validation of
Computer Programs, Technical report FSC-72-6015, IBM
Federal Systems Division.

[3] Stephen G. Eick, Clive R. Loader, M. David Long, Lawrence
G Votta, Scott A. Vander Wiel, 1992. Estimating Software
Fault Content Before Coding, In: Proceedings of the 14th
International Conference on Software Engineering, 59-65.

[4] Håkan Petersson, Thomas Thelin, Per Runeson, and Claes
Wohlin, 2004, Capture-recapture in software inspections
after 10 years research--theory, evaluation and application,
Journal of Systems and Software 72,2 (July, 2004), pp. 249-
264.

[5] Catherine Stringfellow, Anneliese Andrews, Claes Wohlin
and Håkan Petersson, Estimating the number of components
with defects post-release that showed no defects in testing,
Software Testing, Verification and Reliability 12,2 (2002)
pp. 93-122.

[6] Mark C. K. Yang and Anne Chao, Reliability-estimation and
stopping-rules for software testing, based on repeated
appearances of bugs, IEEE Transactions on Reliability 44,2
(1995), pp. 315-321.

[7] Thomas Thelin, 2004, Team-based fault content estimation
in the software inspection process, Proceedings of the 26th
International Conference on Software Engineering
(Edinburgh, Scotland, United Kingdom, May 23 – 28, 2004),
263-272.

[8] Tron Foss, Erik Stensrud, Barbara Kitchenham, and Ingunn
Myrtveit, 2003. A simulation study of the model evaluation
criterion MMRE, IEEE Transactions on Software
Engineering, 29,11 (Nov. 2003), pp. 985-995.

[9] Amr Kamel, and Paul G. Sorenson, The application of
capture-recapture log-linear models to software inspections
data, Proceedings of the International Symposium on
Empirical Software Engineering (Rome, Italy, Sept. 30 –
Oct. 1, 2003), 213-222.

[10] Lionel C. Briand, Khaled El Emam, Bernd G. Freimut, and
Oliver Laitenberger, A comprehensive evaluation of capture-
recapture models for estimating software defect content,
IEEE Transactions on Software Engineering, 26,6 (June
2000), pp. 518-540.

[11] Håkan Petersson, and Claes Wohlin, An empirical study of
experience-based software defect content estimation
methods, Proceedings of the 10th International Symposium
on Software Reliability Engineering (Boca Raton, Florida,
United States, Nov. 1 - 4, 1999), 126-135.

[12] Ching-Pao Chang, Jia-Lyn Lv, and Chih-Ping, Chu, A defect
estimation approach for sequential inspection using a
modified capture-recapture model, Proceedings of the 29th
International Computer Software and Application conference
(Edinburgh, Scotland, United Kingdom, July 25-28, 2005)
vol. 1, 41-46.

[13] Thomas Thelin and Per Runeson, Confidence intervals for
capture-recapture estimations in software inspections,
Information and Software Technology 44,12 (Sept. 2002) pp.
683-702.

[14] Lionel C. Briand, John W. Daly, Jürgen K. Wüst, A Unified
Framework for Coupling Measurement in Object Oriented
Systems, IEEE Transactions on software engineering,
25,1(January 1999), pp 91-121.

[15] Norman E. Fenton, Martin Neil, Software metrics: roadmap,
Proceedings of the conference on The Future of Software
Engineering, (Limerick, Ireland, June 04-11, 2000), 357-370.

[16] Dimitri van Heesch, Doxygen,
http://www.stack.nl/~dimitri/doxygen/ 2008-02-29.

[17] Dokbook, http://www.docbook.org/ 2008-02-29.

