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Are Individual Differences in Software Development Performance
Possible to Capture Using a Quantitative Survey?

Abstract
Software engineering is human intensive. Thus, it is important to understand and evaluate the
value of different types of experiences, and their relation to the quality of the developed software.
Many job advertisements focus on requiring knowledge of, for example, specific programming
languages. This may seem sensible at first sight, but is it really possible to capture software devel-
opment performance using this kind of simple measure? On the other hand, maybe it is sufficient
to have general knowledge in programming and then it is enough to learn a specific language
within the new job. Two key questions are 1) whether prior knowledge of a specific language actu-
ally does improve software quality and 2) whether it is possible to capture performance using sim-
ple quantitative measures? This paper presents an empirical study where the experience, for
example with respect to a specific programming language, of students is assessed using a quanti-
tative survey at the beginning of a course on the Personal Software Process (PSP), and the out-
come of the course is evaluated, for example, using the number of defects and development time.
Statistical tests are used to analyze the relationship between experience/background and the per-
formance of the students in terms of software quality. The results are mostly unexpected, for exam-
ple, we are unable to show any significant relation between experience in the programming
language used and the number of defects detected.

1. Introduction
It is more than 35 years ago since the term “software engineering” was coined. We are still strug-
gling with the same type of problems, for example, cost overrun and software defects. It is true
that we are developing more complex systems today than for 35 years ago, but the basic problems
are the same. New technologies and methodologies will not solve the problem; there is no silver
bullet [1]. The fact still remains that the key asset is the people developing the software. This was
made perfectly clear more than 20 years ago in the book by Boehm [2]. The most important factor
is the people! Other studies have also reported in the large differences in performance between
individuals, see for example [3, 4]. 

Before turning our attention to the people, we would like to highlight some general success fac-
tors, which in retrospect determine whether a specific software project has failed or become a suc-
cess. A success factor is here defined as an output from a software project and it should not be
mixed up with success drivers, which are important aspects during development that may form
the basis for a successful projects. The following four factors are important success factors:

• Cost: primarily related to effort, i.e. person-hours, and productivity,
• Cycle time: time from development starts to delivery,
• Quality: this is a complex attribute where one important part is defects,
• Predictability: the ability to predict the other attributes.
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The bottom-line is that to achieve quality in the software, it is necessary to understand which
factors that affect software quality. To shed some light on one of the most important factors,
namely people issues, including the importance of specific language knowledge, in relation to the
above success factors, we have conducted an empirical study. Thus, we do not intend to question
whether there are large differences between individuals; we view this as a known fact. However,
we would like to study the effect of the background of individuals in terms of easy quantifiable
information regarding, for example, programming knowledge and relate that to their ability of
developing high quality software.

The objective of the study is to investigate the performance of the individuals versus their back-
ground with a particular emphasis on programming knowledge and experience. The study has
been conducted within the context of the Personal Software Process [5, 6]. 65 students filled out a
survey aiming at documenting their background as they entered the PSP course. After the course
the outcome was measured. Seven measures were defined to capture the performance of the indi-
viduals. The performance is for most students improved through the course, whether it is a result
of the PSP or practising software development in general is hard to know. The change in perform-
ance over the 10 assignments is not viewed as a problem, since the performance is measured in
terms of overall performance in the 10 assignments. The seven measures were defined so that they
should capture three of the above factors; it was not possible to define any measure capturing
cycle time. The assignments were handed in on a weekly basis, hence making it difficult to actu-
ally measure cycle time.

The objective is to present the results from the study and discuss the outcome. It should be noted
that the objective is not to study and evaluate the PSP. The PSP is used as a context in the empiri-
cal study. To evaluate the PSP, we should study the performance of individuals before and after
the course. It is fairly obvious that we will see improvements during the course as course attendee
start practising planning and better follow-up. A study of the defect data from the perspective of
understanding defect detection within the PSP is presented in [7].

The paper is organized as follows. Section 2 describes the design of the empirical study. The
analysis of the data is discussed in Section 3. The presentation includes both analyses of the sur-
vey data, the performance data and then an inference between the survey and the performance.
Section 4 provides a summary and some discussions.

2. Design of the empirical study
2.1 Context: the Personal Software Process
The Personal Software Process (PSP) has gained lots of attention since it became publicly availa-
ble [5]. The objective of the PSP is basically to provide a structured and systematic way for indi-
viduals to control and improve their way of developing software. We have seen papers, for
example [8, 9, 10], presenting the outcome of the PSP, both from educational and industrial set-
tings. The PSP is currently used in a number of universities and industry is also becoming inter-
ested in applying the PSP.

The PSP includes seven incremental steps in which the personal software process is gradually
improved. The seven increments include four main increments denoted by PSP0, PSP1, PSP2 and
PSP3. The main differences between these are:

• PSP0 - PSP1: Improved estimation techniques
• PSP1 - PSP2: Introduction of reviews



• PSP2 - PSP3: Incremental development is introduced

At the university, we run the PSP as an optional course for students in the Computer Science and
Engineering program and the Electrical Engineering program. Most students take the course in
their fourth year, and 40-70 students take the course. The main objective of the course is to teach
the students the use of planning, measurement, estimation, quality control, post-mortem analysis
and systematic reuse of experiences. It is from a course perspective more important to teach the
students the techniques packaged within the PSP than actually teaching them the PSP for future
use.

A major advantage in using the PSP as a context for empirical studies is that the description of
the PSP is generally available, and hence makes replication of studies conducted easier. The use
of the PSP as a context for empirical studies is further discussed in [11]. The study presented here
is not a study of the PSP as such, but of the relationship between programming experience and
performance. The use of the PSP as a vehicle for empirical studies implies that the design of the
experiment is pre-defined to a large extent. For example, metrics and templates are given by the
PSP. This also means that the data collection procedure is determined by the PSP. The objective of
using the PSP as context for empirical studies is that the PSP should not affect the results as such.
This may not be completely true, but it is very difficult to judge the effect of context, if any. This
is true not only for the PSP context, but for any context in an empirical study.

In this particular study, the use of students is not critical since the objective is to study the out-
come of the PSP for people having different background and experience. In particular, the differ-
ences related to educational background are evaluated. The subjects (students) are, however, not
chosen by random. They are chosen based on availability, i.e. the students taken the course. This
is often referred to, as being convenience sampling [12], and the study becomes a quasi-experi-
ment due to the lack of randomisation of subjects.

2.2 Variables

2.2.1. Independent variables. As part of the first lecture in the course, the students were asked to
fill out a survey regarding their background in terms of knowledge in software development,
including programming experience, for example, knowledge in C. The survey does not claim to
capture real knowledge and experience. The objective was to use easy quantifiable measures and
evaluate whether these were sufficient to understand the performance of the subjects. The survey
material is presented in Table 1. A third column allowed the students to fill an answer.

These seven measures become the independent variables in the study. The objective of the sur-
vey was to capture their both general background in software development and programming
experience. A particular emphasis was put on C and C++, since C was enforced as a mandatory
programming language independent of the previous knowledge of the students. Given that we
enforced a language, we wanted to know whether this also meant that the students produced soft-
ware of different quality based on their prior knowledge in C, C++ and programming in general.
To enforce a specific programming language is not in accordance with the recommendation in [5].
This also meant that we provided a coding and counting standard. It should be noted that the back-
ground and experience are measured from an educational perspective rather than practical experi-
ence. Thus, the measures would probably have to be changed if replicating the study in an
industrial context.



The general hypothesis based on experiences is that the more experiences in the field the better
performance (higher quality). For example, the hypothesis is that the students having more expe-
rience in C make fewer mistakes, hence having fewer defects in their programs. Thus, in relation
to the survey in Table 1, we assume that a higher grade means a better performance. These general
hypotheses are formalized and evaluated in Section 3.

The results of the survey are presented in Table 2 in terms of frequency distributions of the
number of students providing a certain answer. In Table 2, we may observe that the results are not
optimal from an analysis perspective. A balanced result would have been better, i.e. an equal
number of students giving, for example, a 1, 2, 3 and 4 respectively. It is with the results in Table
2 not possible to perform any sensible analysis when only a few individuals have provided a cer-
tain answer. The analysis would only reflect how these few individuals differ from the rest, and it
will not say anything about that type of background in general.

Table 1. Student characterization

Area Description

Study programme
(denoted Programme)

Answer: Computer Science and Engineering or Electrical Engineer-
ing

General knowledge in computer sci-
ence and software engineering
(denoted SE general)

1. Little, but curious about the new course
2. Not my speciality (focus on other subjects)
3. Rather good, but not my main focus (one of a couple of areas)
4. Main focus of my studies

General knowledge in programming
(denoted Programming)

1. Only 1-2 courses
2. 3 or more courses, no industrial experience
3. A few courses and some industrial experience
4. More than 3 courses and more than 1 year industrial experience

Knowledge about the PSP
(denoted PSP)

1. What is it?
2. I have heard about it
3. A general understanding of what it is
4. I have read some material

Knowledge in C
(denoted C)

1. No prior knowledge
2. Read a book or followed a course
3. Some industrial experience (less than 6 months)
4. Industrial experience

Knowledge in C++
(denoted C++)

1. No prior knowledge
2. Read a book or followed a course
3. Some industrial experience (less than 6 months)
4. Industrial experience

Number of courses
(denoted Courses)

A list of courses was provided and the students were asked to put 
down a yes or no whether they had taken the course or not. More-
over, they were asked to complement the list of courses if they had 
read something else they thought was a particularly relevant course.



Table 2. Number of individuals giving a certain answer.

2.2.2. Dependent variables. Seven measures were defined as dependent variables, i.e. measures
we would like to measure and evaluate to assess if the independent variable has a statistically sig-
nificant effect on them. The measures are all derived from the data collected within the PSP. The
measures are all based on all 10 assignments, i.e. we do not judge performance on an individual
assignment, and instead we have chosen to study the results of all 10 assignments together. The
intention is to remove some of the variations with looking at individual assignments and instead
capturing the overall performance in the course. The seven measures are:

• Time - total development time (often also referred to as effort and here measured in minutes),
• Size - total size of the programs, i.e. new and changed lines of code are calculated,
• Defects - total number of defects,
• Defects/KLOC - the number of defects per 1000 lines of code,
• Productivity - total size of the programs divided by the total development time (presented as

LOC per hour),
• Predictability size - the relative error estimating program size (measured in percentage),
• Predictability time - the relative error estimating development time (measured in percentage).

No further planning was required as the data are collected as an integral part of the PSP. In other
words, all of the seven measures defined could be derived from the data collected during the PSP
course. It was decided to stick with the original measures in the PSP instead of formulating new
measures. The mean and standard deviation of the seven dependent variables are shown in Table
3.

Independent variable 1 2 3 4

Study programme CSE: 32 and EE: 27

SE general 1 14 22 22

Programming 7 28 23 1

PSP 18 30 10 1

C 32 19 6 2

C++ 37 16 4 2

Courses 2: 9; 3: 6; 4: 6; 5: 7; 6: 6; 7: 
11; 8: 7; 9: 3; and 10: 4.a

a. Interpretation: 2: 9 means that nine students had 
read two courses and so forth.



Table 3. Summary of dependent variables.

In addition, an example of a box plot illustrating the individual differences is provided in
Figure 1. Moreover, the relation between the best performing student and the worst performing
student is shown in Table 4 together with the relation between the upper quartile (i.e. 75%,
denoted Q3) and the lower quartile (i.e. 25%, denoted Q1) as well as relation between the 90%
(denoted P90) and 10% (denoted P10) percentiles. The objective is to show the degree of individ-
ual differences in terms of performance with respect to the seven dependent variables.

Figure 1. A box plot over the individual differences in performance with respect to time.

Dependent variables Mean value Standard deviation

Size 984 244.1

Time 3353 1342.1

Defects 75.8 63.8

Defects/KLOC 75.9 50.5

Productivity 20.0 8.3

Predictability
size

37.1 15.2

Predictability
time

30.7 12.2
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Table 4. Relations between individuals.

Both Figure 1 and Table 4 show clearly that there are indeed large differences between the indi-
viduals in this particular data set. The very high values for Defects and Defects/KLOC are proba-
bly due to that some individuals log very few defects and others log everything. However, the
other values in Table 4 clearly shows that the differences are large between, for example, the 90%
percentile and the 10% percentile. It is for most measures in the range between 2.5 and 3.1. Thus,
this means that between the best 10% (on a specific measure) and the worst 10% there is a differ-
ence close to a factor three. The research question is however if these differences could be
explained with some simple background and experiences measures.

2.3 Hypotheses
Based on the independent and dependent variables defined we are now able to state our hypothe-
ses better. Our general hypothesis is that more experience (higher score on the survey) means bet-
ter performance, for example, fewer defects.

This means that we would like to test if there is a statistically significant relationship between
the different independent variables and the dependent variables. Before doing this, it is important
to evaluate which of the four success factors, see Section 1, the dependent variables represent.
This is done in Section 3.2 using factor analysis after having validated the data set in Section 3.1.
Prior to analysing the data, it is, however, important to address the validity of the study.

2.4 Validity
The validity of empirical studies is always important. It is, however, particularly important when
the empirical studies are based on non-random samples. In software engineering, we have mostly
to accept that we are unable to have random samples. This type of studies is sometimes referred to
as quasi-experiments [12, 13]. In our particular case, we are interested in several aspects related to
validity.

Firstly, we must consider the internal validity, i.e. are the results trustworthy? The internal valid-
ity within the course is probably not a problem, except that the measures of experience in the sur-
vey may not mirror the important aspects, although they try to capture educational aspects. The
performance is measured on an individual level, and the same individuals have participated in the
survey. Thus, the coupling between the treatment (difference in background) and outcome (per-

Dependent variables Max/Min P90/P10 Q3/Q1

Size 3.06 1.78 1.38

Time 4.62 2.57 1.65

Defects 19.15 3.46 1.81

Defects/KLOC 17.09 2.78 1.69

Productivity 5.90 3.10 2.00

Predictability size 5.49 2.79 1.83

Predictability time 5.42 2.76 1.75



formance) is clear. Moreover, the large number of tests (equal to the number of students) ensures
that the results become trustworthy.

Secondly, the external validity may be considered. The external validity is concerned with the
possibility of generalizing the results outside this particular study. Two different generalizations
are of particular interest 1) students entering software industry, and 2) software engineers in
industry. The first generalization is the primary concern in terms of external validity in this paper.

The results from the study are probable generally valid for students entering the software indus-
try. The students taking the PSP course at the university are probably a representative sample of
students leaving the university for a software development job in industry. The Swedish students
are probably representative of fourth year’s students in several other countries. The software
industry is very international and the Swedish students perform as good as students coming from
other countries. This assessment is based on qualitative information obtained when talking to peo-
ple working in the telecommunication industry. Thus, the study provides some insight of what
industry can expect when hiring new employees coming directly from the university. In particular,
industry obtains information regarding the value of, in terms of producing high quality software,
that an applicant knows or does not know a particular programming language. For example, the
study provides insight into whether it is important or not to state, in a job opening, that knowledge
in a specific programming language is important.

The study presented is based on student data, and the results may be slightly different when
involving software engineers from industry, but we believe that the main results are valid also for
software engineers in general, since differences in background exist in all work places. In sum-
mary, we believe that the results have a rather good external validity, hence making the results
generally interesting. To further investigate the validity, we would like to encourage replication of
the study.

2.5 Operation
The subjects (students) are not aware of what we intend to study. They were informed that we
wanted to study the outcome of the PSP course in comparison with the background of the par-
ticipants, and our intentions of analysing the data. They were, however, not aware of the actual
studies. The students, from their point of view, do not primarily participate in an empirical study;
they are taking a course. All students are guaranteed anonymity.

The survey material is prepared in advance. Most of the other material is, however, provided
through the PSP book [5]. The empirical study is executed over 14 weeks, where the 10 program-
ming assignments are handed in regularly. The data are primarily collected through forms. The 10
programming assignments are mostly small statistical programs. The complexity and difficulty of
the programs vary slightly. Interviews are used at the end of the course, primarily to evaluate the
course and the PSP as such.

3. Analysis of the empirical study
3.1 Data validation
Data were collected for 65 students. After the course, the achievements of the students were dis-
cussed among the people involved in the course. Data from six students were removed, due to that
the data were regarded as invalid or at least questionable. Students have been removed not
because the evaluation was based on the actual figures, but because of our trust in the delivered
data. The six students were removed due to:



• Data from two students were not filled in properly.
• One student finished the course much later than the rest, and he had a long period where he did

not work with the PSP. This may have affected the data.
• The data from two students were removed based on that they delivered their assignments late

and required considerably more support than the other students did, hence it was judged that
the extra advice might have affected their data.

• Finally, one student was removed based on that his background is completely different than the
others.

This means removing six students out of the 65, hence leaving 59 students for statistical analysis
and interpretation of the results.

3.2 Analysis of dependent variables
The dependent variables, i.e. the seven performance measures, are analysed using a factor anal-

ysis. The objective is to evaluate the relationship between the seven measures. This is done to
ensure that the seven dependent variables represent different dimensions of achieved performance
in terms of different quality aspects. This is done to ensure that the measures really capture sev-
eral of the many dimensions of software quality. The factor analysis is made using principal com-
ponent analysis with Orthogonal Transformation Solution-Varimax, and using an eigen value > 1
as the criterion for including a factor [14]. The results are presented in Table 4. It is of particular
interest to assess if we are able to capture the success factors discussed in Section 1. 

Table 5. Factor analysis of the performance measures.

The seven measures are divided into three factors. Loadings above 0.6 are shaded, and indicate
which measures that are most closely related. The first factor is primarily related to defects (cf.
quality in Section 1, i.e. primarily product quality). The time is included in this factor that may be
viewed as unexpected, but there is a natural explanation. The long development times come pri-
marily from the times when the students have some problems with one or two defects. Thus, the
development time is very much driven by the mistakes made by the students when developing the

Dependent 
variable Factor 1 Factor 2 Factor 3

Time 0.676 -0.527 -0.131

Defects 0.963 0.139 -0.024

Defects/KLOC 0.919 -0.068 0.008

Size 0.382 0.736 -0.142

Productivity -0.301 0.925 0.037

Predictability 
size

-0.098 0.060 0.776

Predictability 
time

0.045 -0.095 0.774



programs. The second factor is mostly related to size. This is not found among the factors in Sec-
tion 1, but it is most closely related to cost and effort. Finally, the third factor is clearly a predicta-
bility factor (cf. Section 1).

It is interesting to note that we are able to identify two of the factors in Section 1 rather easily,
and even the third is detectable. It indicates that the defined measures do indeed capture at least
three success factors rather nicely. Thus, the defined measures are relevant measures of the per-
formance of the individuals, i.e. the seven measures capture several important facets of software
quality.

The correlations between variables within a factor are not as high as may be suspected. The cor-
relation between Defects and Defects/KLOC is high, but the others are around 0.5 except for the
correlation between the two predictability variables which is as low as 0.22.

3.3 Hypotheses assessment
The next step is to test the hypotheses stated above in Section 2. In the statistical inference, we use
an ANOVA test to evaluate the hypotheses. These tests are parametric tests, but they are mostly
rather robust, see, for example, [15]. A significance level of 0.05 is used for all tests, which is a
standard level of significance in many research disciplines. The p-values obtained from the tests
are shown in Table 4. If the ANOVA test turns out to be significant, a Fisher PLSD (Protected
Least Significant Difference) test is performed to evaluate the pairwise significance between the
measures [16]. For example, is there a significant difference between students having given a
grade of 2 respectively 3 in experience in C with regard to the number of defects?

If the p-value is less than the chosen significance level (0.05), then the null hypotheses can be
rejected. The study includes a large number of hypotheses given the number of variables. To illus-
trate the hypotheses:

• H0: There is no difference in the number of defects based on the experience in C. Let
Defects(1), Defects(2), Defects(3) and Defects(4) be the number of defects when the grade in
experience is 1, 2, 3 and 4 respectively. The hypothesis can now more formally be stated as:
H0: Defects(1) = Defects(2) = Defects(3) = Defects(4)

• HA. The alternative hypothesis is that the experience in C does make a difference in the number
of defects. This can also be formulated as that there is a difference between two or several of
Defects(1), Defects(2), Defects(3) and Defects(4).

In Table 6, the significant results are shaded. It should, however, be noted that a significance
level of 0.05 indicates also a 5% risk of getting a significant result although there is no significant
result. This is particularly crucial since the large number of tests may very well mean that some
findings are a statistical artefact rather than a true result. This also emphasizes the need for repli-
cation of the study.

The p-value is less than 0.05 in some other cases, but in these cases the significant difference
comes from a few individuals having extreme values, see also the discussion regarding balance in
the data set in Section 2 in relation to Table 2. Further, it is of course important not only to iden-
tify significant results, but also the differences (size of the effect). The latter is however out of the
scope of the analysis here.

Two main issues are worth highlighting:
• Significant results,
• Unexpected non-significant results.



These two issues are discussed together. The results are discussed from the perspective of the
experience data, i.e. the discussion of Table 6 is done column by column (Column 1-7). 

Some of the aspects worth noting from Table 6 are:

1. Study programme
Significant: three factors show a significant difference between students from the Computer
Science and Engineering, and Electrical Engineering. The factors are size, productivity and
predictability of size. It is interesting to note that it is the students from the Electrical Engineer-
ing programme that write the smaller programs, and they are also better in predicting the size.
It is, however, the students from the Computer Science and Engineering programme that are
most productive.
Non-significant: there is no difference in the number of defects, which is unexpected. Based
on the educational programme, it would be expected that the Computer Science and Engineer-
ing students make fewer mistakes due to more practice in programming. The mean value of
defects is lower for the students from the Electrical Engineering programme, although the
results are not significant. 

2. General knowledge in computer science and software engineering
Significant: the significant results for the development time is a result of an extreme outlier
hence they are ignored. The other significant results are between grade 2 versus grade 3 and 4.
It is, however, rather unexpected that the persons giving a grade of 2 write the smallest pro-
grams, but they also have a significant lower productivity. The latter is as expected. It may be
that we should reconsider if a smaller program is better or not. It may be the case that the larger
programs are better structured.
Non-significant: the other results are not that interesting. The general knowledge in computer
science and software engineering was not expected to be one of the variables influencing the
success factors the most.

3. Number of courses
Significant: only the productivity shows a significant difference. The difference is between
those having read 2-3 courses and those having read 7-8 courses. In other words, the more gen-
eral knowledge increases productivity. This is probably due to more programming practice
when taking more courses within software development. The significance is closely related to

Table 6. The p-values for independent variables when evaluated versus the dependent 
variables.

p-value Programme SE Courses Prog C C++ PSP
Time 0.098 0.034 0.394 0.173 0.101 0.318 0.022
Defects 0.602 0.335 0.260 0.701 0.768 0.961 0.928
Defects/
KLOC

0.832 0.458 0.325 0.845 0.724 0.899 0.840

Size 0.047 0.032 0.365 0.429 0.903 0.947 0.932
Prod. 0.002 0.001 0.020 0.035 0.111 0.110 0.465
Pred. size 0.015 0.138 0.243 0.243 0.166 0.183 0.507
Pred. time 0.256 0.750 0.695 0.756 0.271 0.272 0.807



the significance discussed above.
Non-significant: for all other variables, it is not possible to show any statistically significant
results.

4. General knowledge in programming
Significant: the programming experience only significantly affects the productivity. The sig-
nificant results come between those having just read a couple of courses (grade 1), and those
having some more experience (grade 2 and 3). Only one individual has a grade of 4, hence it is
not possible to talk about any significant results.
Non-significant: it is rather surprising that more programming experience does not affect the
other variables, for example, the number of defects and the development time. It also seems
clear that although some students have more programming experience, they have not been used
to make predictions.

5. Knowledge in C
Significant: no significant results are obtained based on the experience in C.
Non-significant: it is unexpected that experience from the mandatory language does not sig-
nificantly affect any of the parameters.

6. Knowledge in C++
The results are rather similar to the previous item, i.e. knowledge in C. It was expected that
previous experience from C++ should have been important when C was used as a mandatory
language.

7. Knowledge about the PSP
The significant results come once again from one single individual and they are hence ignored.
The lack of significant results is actually expected, since the evaluation is between previous
experience and performance in the assignments. The previous knowledge about the PSP is not
likely to influence this relationship. Thus, it underlines that this empirical study is not about the
PSP, but the relation between experience and performance. 

4. Discussion
4.1 Summary
Software engineering is highly dependent on the skills and knowledge of the individuals working
in the field. Thus, it is important to know what type of individual differences is important to
achieve high quality. This paper has addressed the situations where students have different back-
ground and knowledge in software development in general and programming in particular. The
latter includes both general knowledge and knowledge of C and C++ specifically. The objective
has been to evaluate two things:
• Is it possible to capture relevant knowledge and experience, using a quantitative survey, to

identify high performing individuals?
• Is prior knowledge in a specific programming knowledge important when it comes to produc-

ing high quality software?
Capturing seven background and experiences measures and comparing with the actual perform-
ance of the different individuals evaluated the first question. The second question relates to
whether knowledge in a specific programming language is important for the final quality of the
software or if a programming language may be learnt on the job. This was evaluated by enforcing
C as a mandatory programming language within a course on the Personal Software Process. 



The context of the PSP has allowed us to evaluate the dependence between programming knowl-
edge/experience and actual performance in developing software. It has also been argued that the
subjects (students) are believed to be rather representative although not being professional soft-
ware engineers. How representative fourth year students are in comparison with industrial soft-
ware engineers is an area for further research, which is partly addressed in [17]. The study was
primarily quantitative and given the results it would have been valuable to complement the quan-
titative results with a qualitative evaluation. This was, however, infeasible since the analysis was
primarily made after the students left the class and had moved on to other courses, Master thesis
work or in some cases started working in industry.

Several hypotheses have been assessed using statistical inference. It is particularly interesting to
note that the experience in the programming language had no significant effect on the perform-
ance, independent of the performance measure. In general, it can be noted that the study resulted
in more unexpected than expected results. It is particularly interesting to note that no significant
results were found based on knowledge in a particular programming language. Thus, it is indi-
cated that personal ability in general is probably more important than actual skills in a specific
programming language. This actually means that it is not particularly important to require knowl-
edge in a specific programming language for different job openings. Other skills are clearly more
important to develop high quality software. However, this is the result with this data set, which
unfortunately is fairly skewed, and hence the previous statements should be interpreted with some
caution. It would be very interesting to have the study replicated and in particular if it was possi-
ble to find a more balanced data set than the one in this study.

The results seem to indicate that the major difference in performance may not easily be measur-
able by different experience measures. From the data, it is clear that there are large individual dif-
ferences. Some students perform better than others do, although it is not possible to show it with
the defined experience measures. The actual outcome will, however, be further analysed in the
future, for example, it will be studied whether the same individuals perform best for all of the
measures. In other words, the future work will focus on finding different patterns in the perform-
ance measures.

4.2 Implications
Although not evaluated in the study, it is our belief that the differences between individuals are
larger than that between different design methods or programming languages. The differences
between individuals may very well depend on psychological issues and the ingenuity of the indi-
viduals. The latter is not easily captured in simple experience measures as evaluated in this study.

The results have implications for both those that define software engineering curricula and for
those advertising and employing software engineers. From a curricula point of view, the implica-
tions are that it is more important to teach the principles of software engineering than a specific
notation. Having said this, it does not mean that we should not teach up-to-date methods and tech-
niques. However, there are important differences between having a course on “object-oriented
programming using Java” or a course on “Java programming”. The former course would focus on
the principles and the use Java as an example, which of course also includes teaching the seman-
tics and syntax of Java. The latter course would probably be too focused on Java and not really
give the students the full understanding of object-oriented programming as such. The recommen-
dation based on the findings from this study would be to ensure that the principles are taught, but
that up-to-date methods and techniques are used in the courses. As a consequence of the findings,
it is also recommended that universities should not provide a large number of programming



courses teaching different languages based on the same paradigm; it is more important to cover
different programming paradigms.

The implications for advertisers and employers are that they should really carefully consider
what they want from a newly employed. How important is knowledge in a specific technique or
method in comparison to having a good understanding of software development? The latter is of
course much more difficult to capture, but employers who manage to do that will most certainly
employ people that can more easily manage the inevitable changes in techniques and methods
over time. A potential risk with focusing too much on a technique or method is that when a shift
occurs to something new a person employed based on knowledge in a specific language will have
a harder time to change than a person who has a more in-depth understanding of the underlying
principles. These are possible implications and more studies are needed.

4.3 Further work
This reasoning leads us to the conclusion that these issues have to be studied further. First, the
data presented here have to be further analysed including studying variation between individuals,
different measures (for example quality in terms of defects) when some of the measures are simi-
lar (for example productivity). Second, it is necessary to evaluate the importance of people in
comparison with new technologies and methodologies. Third, it is necessary to take other aspects
into account when studying the performance of individual software developers. Fourth, replica-
tions are needed, i.e. studies that compare the performance of individuals with different back-
ground. It is probably not until we truly understand the human aspect of software development
that we can make major progress in terms of development time and software quality.

4.4 Conclusions
It can be concluded for the first research question above that it is possibly other factors that have
to be captured to explain the differences in individual performance than those that can easily be
captured with a quantitative survey. Moreover, it can be concluded with respect to the second
research question that the actual prior knowledge of a programming language did not affect the
quality of the produced programs. The latter indicates that it is probably not worth requiring
knowledge in a specific programming language in job advertisements.
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