

C. Wohlin, "Empirical Software Engineering: Teaching Methods and Conducting
Studies", in Empirical Software Engineering - Dagstuhl Seminar Proceedings (LNCS
4336), pp. 135-142, edited by V. Basili, D. Rombach, K. Schneider, B. Kitchenham,

D. Pfahl and R. Selby, Springer Verlag, 2007.

Empirical Software Engineering: Teaching Methods
and Conducting Studies

Claes Wohlin

Blekinge Institute of Technology, Box 520, SE-37225 Ronneby, Sweden
Claes.Wohlin@bth.se

Abstract. Empirical software engineering has grown in importance in the
software engineering research community over the last 20 years. This means
that it has become very important to also include empirical studies
systematically into the curricula in computer science and software engineering.
This chapter presents several aspects and challenges to have in mind when
doing this. The chapter presents three different educational levels to have in
mind when introducing empirical software engineering into the curricula. An
introduction into the curricula also means increased possibilities to run
empirical studies in student settings. Some challenges in relation to this is
presented and the need to balance educational and research objectives is
stressed.

1. Introduction

Empirical software engineering has established itself as a research area within
software engineering during the last two decades. 20 years ago Basili et al. [Basili86]
published a methodological paper on experimentation in software engineering. Some
empirical studies were published at this time, but the number of studies was limited
and very few discussed how to perform empirical studies within software engineering.
Since then the use of empirical work in software engineering has grown considerably,
although much work still remains. A journal devoted to empirical software
engineering was launched in 1996 and conferences focusing on the topic have also
been started. Today, empirical evaluations and validations are often expected in
research papers. However, the progress in research must reflect on education.
Computer scientists and software engineers ought to be able to run empirical studies
and understand how empirical studies can be used as a tool for evaluation, validation,
prediction and so forth within the area.

This chapter presents some views on education into empirical software
engineering. In particular, the chapter contributes by identifying three different
educational levels for empirical software engineering. Furthermore, the chapter
stresses the possibility to run both experiments and case studies as part of courses and
how this facilitates research. However, to perform research as part of courses, with
the educational goals of a course in mind, requires a delicate balance between
different objectives. The research goals must be carefully balanced with the
educational goals. Different aspects to have in mind when balancing the different

2 Claes Wohlin

objectives are presented. Finally, the need to develop guidelines for running empirical
studies in a student setting is stressed. Guidelines are needed both to ensure a proper
balance between different objectives and to, within the given constraints, get the
maximum value from empirical studies run in a student setting. It is too simplistic to
disregard empirical studies with students just because they are students instead there
is a need to increase our understanding of how empirical studies with students should
be conducted and to what extent results from them could be generalized.

The chapter is outlined as follows. Section 2 provides an overview of some related
work. In Section 3, three different educational levels to consider when introducing
empirical studies into the curricula are presented, and different types of empirical
studies to use in relation to courses are discussed. Section 4 presents some aspects to
have in mind when balancing educational goals and research goals. Finally, a brief
summary and conclusions are provided in Section 5.

2. Related work

The literature on education in empirical software engineering is limited. The literature
primarily describes either specific experience from a course, such as [Höst02], or
from performing a research study with students as subjects [Thelin03]. Most
empirical studies conducted in an educational setting are controlled experiments,
although some articles are more related to studies of student projects and hence could
be classified as case studies [Höst02, Berander04]. Some exceptions exist, where
authors discuss the use of students in empirical studies for different purposes
[Carver03].

Anyway, there is a need to improve the way we both teach and conduct empirical
studies in software engineering. However, there are many challenges. Software
engineering is primarily concerned with large scale software development and hence,
for example, the use of controlled experiments in laboratory setting is not
straightforward. This is true both when it comes to student learning and to conducting
research in an academic setting. We have to understand and define how to conduct
controlled experiments in laboratories to make them useful in a larger context. This
makes the challenges quite different from other disciplines using experimentation.
There is a lot to learn from other disciplines, but there is also a need to address the
specific challenges when conducting experiments in software engineering.

When experimentation was introduced into software engineering, the main focus
was on running experiments. As the work progressed, more focus has been put on the
actual methods used. The two books on experimentation [Wohlin99, Juristo01] are
good examples. Researchers have also started addressing how results from different
empirical studies should be combined either through meta-analysis [Hayes99,
Miller99] or using a more evidence-based approach [Kitchenham04]. Other
researchers have addressed the challenge of building families of experiments
[Basili99] and hence plan for combining experiments rather than trying to combine
existing studies. This is also closely related to the issue of replication [Shull02]. Some
experiences from conducting realistic experiments are presented in [Sjøberg02], in
particular the article argues for funding running experiments and hiring professionals

Empirical Software Engineering: Teaching Methods and Conducting Studies 3

to participate in them. This is one possible way. However, we believe that we have to
better understand how to transfer results from laboratory experiments with students as
a complement to running larger experiments and hence also much more expensive
experiments with professionals. In particular, it is a challenge to both teach empirical
methods in an effective way and to simultaneously run studies that are valuable from
a research perspective or from a technology transfer perspective.

When it comes to actually trying to understand the role of students as subjects in
controlled experiments in software engineering, the first article addressing the topic
explicitly was published in 2000 [Höst00]. The article presents an empirical study
where both students and professionals participate, and then the article compares the
two subject groups. In this case, no differences could be identified in performance. In
another study, it is concluded that it is better to experiment within project courses than
as separate exercises [Berander04]. Based on the conviction, that it is too simplistic to
look solely at students vs. professionals, a scheme has been developed to include both
experience and motivation [Höst05]. In another study, an interesting observation was
made when a situation was found where the results from experiments with students
became possible to generalize. It was a situation when the students knew one of the
methods used much better but still the other method came out as being the best to use
[Staron06]. When it comes to work on objects to use in experiments, the research is
very limited. It is mentioned in passing in books, but no research actually addresses
the challenges that have been identified.

In addition to the above, a large number of actual experiments have been
published. A survey is presented in [Sjøberg05]. Furthermore, two books with a
collection of empirical studies, including controlled experiments, have also been
published [Juristo03, Wang03].

3. Teaching empirical methods

This section addresses issues to consider when teaching empirical software
engineering on different educational levels, including bachelor, master and PhD level.
Furthermore, the section discusses the use of different empirical methods in particular
experiments and case studies.

3.1 Educational levels

Empirical software engineering may be taught in at least three distinct ways:
• Integration in software engineering courses

One way of making empirical studies a natural part of evaluating and assessing
different methods, techniques and tools is to integrate empirical work as
assignments or studies within other courses. This means that in, for example, a
course on software design different ways of performing a design can be compared
and evaluated empirically. Another example is to include an experiment in a
verification and validation course, where, for example, unit testing and inspection
could be compared. In particular, it may be interesting to evaluate which type of

4 Claes Wohlin

faults that are found with the different techniques. Integration into courses early in
the curricula means that students get exposed to and used to apply empirical
methods.

• Separate course
It is also possible to run a separate course on empirical software engineering. The
major advantage is that the course becomes very focused on empiricism and hence
it becomes easier to provide assignments that include designing studies, reviewing
empirical work and also possible write an empirical paper. The latter may be done
without actually running a study, i.e. the focus could be in identifying, designing
and discussing an empirical study. A potential drawback may be that it is hard to
get a separate course on empirical software engineering into the curricula. It is
often many different topics that should be covered in a software engineering
program.

• Inclusion in research methodology course
The need for a research methodology course normally becomes evident when
students are approaching their thesis work, independent of whether it is a bachelor,
master or PhD thesis. Thus, it may be natural to include an empirical software
engineering component in a more general research methodology course. Other
components may be the use of an analytical approach or the use of simulation.

The above three alternative ways of teaching empirical software engineering may be
mapped to educational levels. The mapping is based on experiences at Blekinge
Institute of Technology to integrate empirical software engineering into a general
software engineering program. At Blekinge, students may get five different degrees in
software engineering. The first three are regarded as being on undergraduate and
graduate level and they are (counting years from the start at the university): 1)
university diploma in software engineering after two years, 2) a bachelor degree after
three years and 3) a master degree after 4.5 years. The two latter includes a thesis,
where the thesis on the master level normally is more research-oriented than the thesis
on bachelor level. On a research level, two different degrees are awarded: 1) licentiate
degree after two years of research studies and 2) a doctoral degree after four years of
research studies. The licentiate degree includes a year of course work and a thesis
equivalent to one year of full time research. The doctoral degree includes 1.5 years of
course work and a thesis equivalent to 2.5 years of research. The work to licentiate
level is expected to be included in the doctoral degree. To simplify a little and make
the Swedish system comparable to an international context, the main focus is set on
the bachelor, master and PhD levels. These three levels are also the ones included in a
joint agreement within the European community to ensure compatibility between
countries within the community.

In our experience, it is suitable to try to integrate assignments with some empirical
parts into courses on the bachelor level. It is also possible to successfully perform
experimental studies with students as subjects on the bachelor level. However, it is
crucial to ensure a very clear educational goal with such studies. This is particularly
important on the bachelor level since the students are still quite far from research.

On the master level, it is still important to integrate empirical methods and studies
into other courses. The students are now approaching the research level and in
particular they are expected to write theses with a research component, and hence it is

Empirical Software Engineering: Teaching Methods and Conducting Studies 5

possible to run experimental studies that are more research focused. However, it is
still very important to discuss the outcome of the studies and relate to whatever topic
they are studying. Before the master thesis, it is suitable to run a course on either
empirical software engineering or a more general research methodology course with
an empirical component. The actual choice is dependent on whether the thesis work is
expected to be only empirical or if other research approaches are also possible. It also
matters whether the objective is to run a joint course between several programs, for
example, a joint course between software engineering and computer science. The
latter is the situation at Blekinge and hence methods for empirical studies are included
in a more general research methodology course.

Finally, on the PhD level, we have experience from teaching specific courses on
controlled experiment in software engineering, empirical software engineering and
also a course on statistical methods for software engineers. The latter course is based
on having data from a number of empirical studies in software engineering. The
course is given using a problem-based approach. This means that the students are
given a set of assignments connected to the data sets provided. No lectures are given
on how to solve the problems and no literature on statistics are provided. It is up to
the students to find suitable literature and hence statistical methods to use based on
the assignments and the data available to them. The students practice statistical
methods useful both for case study data and data from controlled experiments.
Students provide individual solutions that are peer reviewed before a discussion
session. In the discussion session, differences in solutions are discussed and the
teacher shares her or his experience with the students. The sessions include
discussions on both the statistical methods used and the interpretation of the analysis
in a software engineering context. This course is run for the second time in 2006 with
participants from five different Swedish universities.

3.2 Different types of studies

Most empirical studies run in a student context are controlled experiments. This poses
some challenges. First of all, it is important to ensure that any study run contribute to
the learning process of the students. Controlled experiments are often run with small
artifacts and they are run standalone, i.e. they are not normally integrated into a
development project. Given that the students in most cases will work in software
projects, it is crucial to show how the knowledge gained from an experiment may be
important also in the larger development context. Second, it is important that the main
objective is on the educational goals. Controlled experiments may be important either
from a research perspective or from a technology transfer perspective, but they may
not be the most important study for the researcher if using students as subjects. A
discussion on these challenges when conducting controlled experiment with students
is provided in Section 4.

Experiments are most common when involving students. However, case studies
should not be forgotten. They could often provide valuable information in a more
project-like context. In many software engineering educations, development projects
are an important part of the curricula. This does not only include individual projects.
In many cases, smaller (4-6 students) projects or more large scale (12-18 students)

6 Claes Wohlin

software projects are run. These projects are not industrial projects, but they have a
number of things in common with industrial projects, such as requiring that people
contribute to a common goal. In some cases, these types of projects may have
industrial customers. An important research question would be to identify in which
cases student projects would be relevant to use in research. Once again, the research
focus should not interfere with the educational goals. In [Berander04], an example is
provided where it was shown that students working in projects behaved more as in
industry than students participating in a controlled experiment.

4. Balancing objectives

A particular challenge is to balance different objectives when conducting empirical
studies as part of the curricula. If a study is part of a course, then the research
objectives should not be allowed to dominate over the educational goals. In other
instances, it is not only a matter of research; it is also a matter of using an empirical
study in an academic context as a stepping stone in a technology transfer process. In
other words, a researcher would like to evaluate a method, technique or tool in an
academic setting before moving it out to, for example, an industrial research partner.
The balance between objectives puts some constraints on the actual empirical study
from a research perspective:
• Clearly connected to educational goals.
• Use of students is always challenged.
• Mandatory participation may affect the results, but optional participation is not

necessarily better.
• Objects in the study must be reasonable for the different perspectives.
• Comparisons between competing methods, techniques or tools must be fair.

The latter two items may require some further elaboration. Students as subjects have
been discussed more in the literature than the use reasonable objects, for example, in
[Höst00, Carrver03]. From an educational perspective objects in a study should not be
too large due to time constraints for the students. Moreover, it may be preferable if the
objects contain certain aspects or constructs that relate to what have been taught in a
course. This may include, for example, certain constructs in a design method. From a
research perspective, it may be preferred if the objects resemble industrial use. This
may mean that objects ought to be larger, and it may also mean that certain parts of,
for example, a design method should not be used or should be used. This may
particularly be the case when the research is conducted as part of a technology
transfer process to a specific company in which case it would be preferable to
resemble that actual intended use at that specific company. This may be contradictory
to the educational objectives. This requires both a delicate balance between objectives
and an increased understanding of how objects should be constructed to help in
balancing the objectives.

The other issue related to the objects is the fairness. It is not fair to teach one
method and briefly introduce another method, and then compare them. This would
clearly favor the method having been taught. Thus, it is important that methods,

Empirical Software Engineering: Teaching Methods and Conducting Studies 7

techniques and tools are introduced in similar ways to ensure comparability from a
research perspective. There is one potentially valuable exception. If students have a
thorough introduction to one out of two competing, for example, test methods and a
brief introduction to the second method, and the second method comes out as the best
then it is interesting. This is interesting since the opposite would normally be
expected and hence it seems like the second method is not only better; it is probably
superior.

In summary, too much focus is set on the use of students in research studies. There
is a need to better understand the whole context of an empirical study in a student
setting. The challenge is to develop our research methodology so that we better know
how to gain the most knowledge from empirical studies with students. To simply
disregard such studies is too simplistic and it may mean that learning opportunities are
lost. As realistic studies as possible is good for both education and research. Thus, we
must work with improving our understanding of how to run and how to make use of
empirical studies within education.

5. Summary and conclusions

This chapter presents some ways to integrate empirical software engineering into the
curricula. Some issues related to this introduction are highlighted. In particular, the
need to balance educational objectives with research objectives is stressed. It is
argued that both education and research would benefit from as realistic empirical
studies as possible when performing studies involving students. Thus, it can be
concluded that the challenge is to integrate empirical software engineering and
empirical studies into the curriculum and maintain research relevance and quality.
Instead of being negative towards studies with students, we should increase our
understanding of how empirical studies with students can be used as part of our
research process. We must address questions such as:
• How is empirical software engineering best introduced into the curricula to ensure

that students are both able to run empirical studies and capable of understating
their value?

• Is it possible to effectively combine educational and research objectives when
performing empirical studies in a student setting?

• Can empirical studies with students be a natural stepping stone in technology
transfer?

Empirical software engineering has established itself as an important area within
software engineering. However, it still remains to effectively introduce it into
computer science and software engineering curricula, and to address several
challenges in relation to the introduction.

8 Claes Wohlin

References

[Basili86] V. R. Basili , R. W. Selby , D. H. Hutchens, Experimentation in software
engineering, IEEE Trans. on Software Engineering, 12(7):733-743, 1986.

[Basili99] V. R. Basili, F. Shull, and F. Lanubile. Building knowledge through families of
experiments. IEEE Trans.on Software Engineering, 25(4):456–473, 1999.

[Berander04] P. Berander. Using students as subjects in requirements prioritization. In Proc.
3rd Int. Symposium on Empirical Software Engineering, pages 167–176, 2004.

[Carver03] J. Carver. L. Jaccheri, S. Morasca and F. Shull. Issues in using students in empirical
studies in software engineering education. In Proc. Int. Software Metrics Symposium, pages
239-249, 2003.

[Hayes99] W. Hayes. Research synthesis in software engineering: A case for meta-analysis. In
Proc. 6th Int. Software Metrics Symposium, pages 143–151, 1999.

[Höst00] M. Höst, B. Regnell, and C. Wohlin. Using students as subjects – a comparative study
of students and professionals in lead-time impact assessment. Empirical Software
Engineering: An International Journal, 5(3):201–214, 2000.

[Höst02] M. Höst. Introducing empirical software engineering methods in education. In Proc.
Int. Conf. on Software Engineering Education and Training, pages 170-179, 2002.

[Höst05] M. Höst, C. Wohlin and T. Thelin. Experimental context classification: Incentives and
experience of subjects. In Proc. Int. Conference on Software Engineering, pages 470-478,
2005.

[Juristo01] N. Juristo and A. M. Moreno. Basics of Software Engineering Experimentation.
Kluwer Academic Publishers, 2001.

[Juristo03] N. Juristo and A. Moreno (editors). Lecture Notes on Empirical Software
Engineering, World Scientific Publishers, 2003.

[Kitchenham04] B. A. Kitchenham, T. Dybå, and M. Jørgensen. Evidence-based software
engineering. In Proc. Int. Conference on Software Engineering, pages 273–281, 2004.

[Miller99] J. Miller. Can results from software engineering experiments be safely combined? In
Proc. 6th Int. Software Metrics Symposium, pages 152–158, 1999.

[Shull02] F. Shull, V. R. Basili, J. Carver, J. C. Maldonado, G. H. Travassos, M. Mendonca,
and S. Fabbri. Replicating software engineering experiments: Addressing the tacit
knowledge problem. In Proc. 1st Int. Symposium on Empirical Software Engineering, pages
7–16, 2002.

[Sjøberg02] D. I. K. Sjøberg, B. Anda, E. Arisholm, T. Dybå, M. Jørgensen, A. Karahasanovic,
E. F. Koren, and M. Vokác. Conducting realistic experiments in software engineering. In
Proc. 1st Int. Symposium on Empirical Software Engineering, pages 17–26, 2002.

[Sjøberg05] D. I. K. Sjøberg, J. E. Hannay, O. Hansen, V. B. Kampenes, A. Karahasanović, N-
K Liborg and A. C. Rekdal. A survey of controlled experiment in software engineering.
IEEE Trans. on Software Engineering, 31(9): 733-753, 2005.

[Staron06] M. Staron, L. Kuzniarz and C. Wohlin. Empirical assessment of using stereotypes to
improve comprehension of UML models: A set of experiments. Journal of Systems and
Software, 79(5):727-742, 2006.

[Thelin03] T. Thelin, P. Runeson and C. Wohlin, “An Experimental Comparison of Usage-
Based and Checklist-Based Reading”, IEEE Transactions on Software Engineering,
29(8):687-704, 2003.

[Wang03] A. I. Wang and R. Conradi (editors). Lecture Notes in Computer Science: Empirical
Methods and Studies in Software Engineering: Experiences from ESERNET, Springer
Verlag, 2003.

[Wohlin99] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén.
Experimentation in Software Engineering – An Introduction. Kluwer Academic Publishers,
1999.

