

C. Wohlin, "Revisiting Measurements of Software Complexity", Proceedings
Asian Pacific Software Engineering Conference, pp. 35-43, Seoul, South

Korea, 1996.

Abstract
Software complexity measures are often proposed as suita-
ble indicators of different software quality attributes. This
paper presents a study of some complexity measures and
their correlation with the number of failure reports, and a
number of problems are identified. The measures are so
poor predictors that we might as well use a very simple
measure, such a measure is proposed. The proposal is sup-
posed to be ironic to stress the need for a more scientific
approach to software measurement. The objective is pri-
marily to encourage discussions concerning methods to
estimate different quality attributes. It is concluded that
either completely new methods are needed to predict soft-
ware quality attributes or a new view on predictions from
complexity measures is needed. This is particular crucial
if the software industry should be able to use software met-
rics successfully on a broad basis.

1. Introduction

In Oxford Advanced Learner´s Dictionary of Current
English, we can, for example, read: Engineer: 1) “skilled
and trained person in control of …”, and 2) “arrange or
bring about skilfully”. The foundation to turn something
into an engineering discipline must be measurement, oth-
erwise we cannot be in control. This means that in soft-
ware engineering, we need measurement otherwise we are
not working with software engineering, but rather with
software creation. Therefore, it is essential to use measure-
ments in software development. It is, however, not enough
to measure; the measures must be well-defined, goal-ori-
ented and validated. One type of measures which has been
discussed since the middle of the 70´s is complexity meas-
ures. Although they have been around for 20 years, they
are not widely used in the software industry. This paper
focuses on different aspects of complexity measurements
and some of the intrinsic problems with them.

The complexity of software is often used as an indica-
tor of software quality. The objective is to define a meas-
ure which then can be used as a indirect measure of one or
several important software quality attributes. The major
problem is that complexity of software is not a single
measure, and hence it is extremely difficult to relate it
directly to software quality. It is, however, a quite gener-
ally accepted method to use complexity metrics to try to
estimate and predict software quality attributes, even
though the task is difficult and evidence of success still is
lacking for most complexity measures proposed in the lit-
erature.

Complexity measures of software have been debated
since the 70´s, when McCabe presented his article on cyc-
lomatic complexity, [1] and Halstead published his ideas
concerning software science, [2]. A major problem has
since been present, i.e. the inability of these complexity
measures to predict different software quality attributes
accurately, as for example reliability and maintainability.
A large number of measures have been proposed during
the last two decades, but still there is no common agree-
ment on a suitable measure.

The maturity of the software process has been very
much in focus during the 90´s. A similar reasoning can be
made for the use of software metrics. During the 80´s,
much research was focused on metrics and correlation
between different metrics and, for example, fault content.
These studies were often discouraging and the researchers
from the 80´s have often moved on to identification of out-
liers or fault-prone modules [3, 4] and measurement for
process improvement [5].

Unfortunately, the growing maturity in part of the
research community is not widely spread. The research
continues and new measures are proposed regularly [6, 7]
and investigations on correlations between measures and,
for example, fault content are published every now and
then [7]. The interest for software metrics in industry is
spreading, but it is too often believed that simple relation-
ships can be found, for example, through correlation stud-

Revisiting Measurement of Software Complexity

Claes Wohlin
Dept. of Communication Systems

Lund Institute of Technology, Lund University
S - 221 00 Lund, Sweden
e-mail: claesw@tts.lth.se

ies. The overall objective here is to indicate that this belief
is not well-founded.

More precisely the objectives of this paper are:
• to present a prior unpublished study of the correlation

between a number of complexity measures and the
number of failure reports,

• to discuss a number of unsolved problems with com-
plexity measures,

• to argue that we might as well go back to a very basic
measure, which is understandable to a majority of the
people, not only in the software community, since the
existing measures of complexity are not really com-
plexity measures at all. Unfortunately, this means argu-
ing yet another measure, but the simplicity and the
well-known interpretation of the measure are, however,
outweighing the disadvantages with introducing a new
measure.

• to promote debate and discussion about the interpreta-
tion, usability and predictability of software quality
attributes from complexity measures. The measure
mentioned in the previous item is primarily suggested
to encourage discussions, but still it shows the level
that software complexity measures is on.
The latter is actually the main objective of this paper

otherwise complexity measures will continue to be
researched within the research community and not being
used within the software development community. There-
fore, intensive discussions are needed to overcome the
problems with complexity measures or to invent other
means to estimate and predict software quality attributes
during software development.

2. Predicting software failures from
complexity measures

2.1 Introduction

The objective of most studies of complexity measures
is to correlate the measures with the number of failure
reports or similar attributes. Based on the correlation, a
model is derived which is intended to be used for predic-
tion purposes for future software systems. This section
presents a study of several complexity measures and the
objective is to identify one or several measures which can
be used to predict the number of failure reports as new
software modules are developed.

The study was conducted in 1983, but the results have
not been published before and unfortunately the results are
still quite typical for many investigations, where we are
trying to correlate some complexity measures with for
example the number of failure reports. A more thorough
presentation of the study can be found in [8].

The results are based on an investigation of 28 software
modules for a large real time system. The size of the mod-
ules is between 270 to 1900 lines of code. For each of
these modules the number of failure reports were counted
and several measures intending to be complexity measures
were derived. In total 27 different measures were col-
lected, with 12 measures being collected from the design
documentation and 15 measures being collected from the
resulting code.

2.2 Data collection

The design data collected were primarily a counting of
the number of symbols of different types. The language
used during design is a predecessor to SDL, (Specification
and Description Language) [9], and it is basically a finite-
state-machine with states and signals. A modified version
of McCabe´s Cyclomatic Complexity, [1] was used as
well. The modification was simply due to being able to
handle signal sending and reception respectively.

The measures from the code are also primarily a matter
of counting the number of constructs of different types, for
example number of variables and number of if-statements.
It must be noted that the programming language was very
much based on goto-statements, and in particular it was
observed that two different types of goto-statements were
used. The difference is:
• goto 11; (unconditional goto)
• if … then goto 12; (conditional goto)

These two types were calculated separately since the
hypothesis was that the first type of goto contributed more
to the fault content than the second type of goto. One more
sophisticated measure, than just calculating the different
constructs in the language, was tested, i.e. an information
theory based measure [10].

It is infeasible to present all data in a paper like this.
Therefore the three best design measures (1-3) and the
three best code measures (4-6) are only shown in Table 1,
together with the number of failure reports for each mod-
ule and the length of each module in terms of lines of
code, including comments. The best refers to the best
measures when minimizing the sum of the quadratic devi-
ations from the best line, where the line was identified
through linear regression. The data was also analysed with
multiple linear regression and with non-linear regression.
Both of these types of analysis improved the correlation
and also the predictive ability. The improvements were,
however, minor and no significant breakthrough could be
observed. Therefore, only the results from the linear
regression are presented as the results in themselves are
not the main concern.

The complete data set can be found in [8]. The data
have not been analysed with, for example, neural networks

[11] and principal component analysis [12]. This will not
be done either as the problem of complexity measures are
not primarily in the statistical method being used. Of
course, the methods can be improved, but the underlying
problem is the measures themselves. This is further dis-
cussed in Section 3 and it is also discussed in [13], where a
rigorous approach to software measurement is empha-
sized. An interesting observation from Table 1, is that the
two more complicated measures, that is McCabe´s Cyclo-
matic Complexity and the information theory based meas-

ure presented by Berlinger [10], were worse than crude
counting measures of different symbol types in the design
and different language constructs on the code in predicting
the number of failure reports.

The three design measures are: number of input signals
to the module (measure no. 1), number of internal signals
in the module (measure no. 2) and number of output sig-
nals from the module (measure no. 3). An interesting
observation is to note that the three best predictors of fail-
ure reports from the design are all related to signalling.

TABLE 1. Data collected.

Module Length
Failure
reports

1
Input
signals

2
Internal
signals

3
Output
signals

4
Uncon.
goto

5
Enter
clause

6
No. of
var.

1 732 0 24 1 20 53 24 72
2 936 0 9 1 12 107 11 58
3 1338 0 14 1 13 132 17 72
4 1492 0 33 1 35 129 32 93
5 748 0 11 0 10 43 11 64
6 611 0 14 3 13 45 17 69
7 618 1 12 1 14 66 14 62
8 271 1 4 2 4 13 6 29
9 697 1 15 1 16 59 15 70
10 1633 1 41 1 41 114 40 82
11 613 2 8 1 8 64 12 50
12 1351 2 10 1 16 149 11 65
13 1144 2 25 0 26 125 24 76
14 1316 3 17 2 16 176 22 77
15 416 4 11 0 12 33 10 26
16 736 4 15 2 15 38 17 53
17 1171 4 29 1 32 106 29 111
18 1885 4 19 2 21 172 15 144
19 1464 5 19 3 19 163 22 78
20 1092 5 11 2 14 80 17 78
21 1002 5 19 1 18 103 20 95
22 1233 5 15 1 18 114 16 65
23 1205 5 18 1 18 183 19 87
24 1306 6 24 1 25 153 24 89
25 1491 8 22 6 18 128 22 133
26 1777 11 71 6 59 211 74 147
27 1377 12 31 1 31 161 33 86
28 639 17 20 0 20 59 20 42

These three measures are, however, quite highly corre-
lated, which will be highlighted in Section 2.3, as many
inputs normally also means a lot of internal signalling and
then responses are sent. The three code measures are not
as directly related. The code measures are: number of
unconditional goto (measure no. 4), number of Enter
clauses in the code (measure no. 5) and finally number of
declared variables in the module (measure no. 6).

It may also be noted that even if more sophisticated sta-
tistical methods are applied in [12] and [11], the measures
collected are still about the same as collected in this study
presented here, which was conducted 13 years ago. The
objective is not to criticize these studies in particular, but
to point out the general status in the field. The work
reported in [12] and [11] is on the contrary some of the
best recent work within the field of complexity measure-
ment.

2.3 Data analysis

The analysis includes both inter-correlation between
the complexity measures and correlation of these to the
number of failure reports, as well as correlation between
the different measures and the program length1. It is of
particular interest to correlate the design measures to the
program length as that actually is a prediction. Based on
the correlation study, linear regression is applied for the
best design and code measures respectively, that is we try
to identify a prediction formula to determine the number
of failure reports from the collected measures. A formula
for predicting the program length from the best design
measures is also presented. The prediction is based on the
best measures for predicting the number of failure reports.
The correlations are shown in Table 2 and the prediction
formulas are presented below.

The correlations are unfortunately quite low in most
interesting cases. In particular, it is worth noting that no
measure has a high correlation with the number of failure
reports, and that the lowest correlation with the number of
failure reports is for the program length. Thus indicating
that the failures must be explained by other means. The
correlation figures mean that the best prediction formulas
are:
• Number of failure reports (from design) =

= 0.124 * Input + 1.38
• Number of failure reports (from code) =

= 0.127 * Enter + 1.16
• Program length (from design) = 24.6 * Output + 586

The predictive accuracy is not very good as can be
guessed from the correlation figures. It is, of course, possi-
ble to perform a thorough investigation of the accuracy.
The comparison can either be made with the data used in
the formulation of the formulas or by letting new modules
be evaluated towards the formulated prediction formulas.
In this particular case, we have used all the available data
in the derivation of the formulas, but it would have been
possible to, by random, select a number of modules which
were excluded from the derivation of formulas a solely
used for evaluation purpose.

The mean estimation error for the modules included in
the study are, for the three cases, 72%, 78% and 32%
respectively, where the mean error is calculated as:

since the number of modules is 28, but if the real value
is zero it is skipped from the calculation. This is the case
for some of the modules as no failures have been reported
for them. It is, of course, necessary to take the absolute
value for each error, which is shown through the function
ABS. It should also be observed that all figures have been
rounded off to integers.

The mean error is quite high, at least when predicting
the number of failure reports hence indicating that there

1. Both the correlation study and the linear regression are
performed with Matlab.

MeanError ABS Estimation i() RealValue i()–()
RealValue i()---⎝ ⎠

⎛ ⎞
i 1=

28

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

28⁄=

TABLE 2. Correlations between the different measures.

Corr. Var. Enter Goto Output Internal Input Failure
Length 0.81 0.58 0.89 0.66 0.39 0.60 0.22
Failure 0.25 0.40 0.30 0.37 0.25 0.39 -
Input 0.65 0.99 0.54 0.98 0.44 - -
Internal 0.60 0.49 0.35 0.33 - - -
Output 0.64 0.95 0.58 - - - -
Goto 0.70 0.55 - - - - -
Enter 0.62 - - - - - -

are more important factors to explain the number of failure
reports than a single and too simple complexity measure.
The best mean error is obtained when estimating the
length of the program from the design. This is hardly sur-
prising as that relationship is much clearer. The mean error
can hardly be expected to be better for modules which
have not been included in the formulation of the formulas,
hence this type of estimation procedure is quite inaccurate.

2.4 Conclusions

The correlations reported in the previous section as
well as the mean errors are discouraging. Therefore, it is
not possible to recommend the use of single measures to
capture software complexity and it is very doubtful if one
single measure ever can be used to predict the number of
faults to be found in specific modules. One problem aris-
ing is the actual granularity. Modules may be too fine
grain to allow for prediction, a potential problem is the
dependency of the individual who has developed the mod-
ule. This issue must be further investigated, to see if, for
example, a grouping of modules into subsystems is a feasi-
ble approach. The usefulness of single measures is the
ability to identify outliers, that is modules which have an
exceptional high value of one or several parameters and
hence is likely to be fault-prone. This is for example dis-
cussed in [4, 14].

The results from the study presented above have not
been presented as they did not give any valuable (predic-
tion) result. Unfortunately, the decision not to publish the
results means that the same type of problems are encoun-
tered by other people trying a similar approach. Software
complexity measures have a number of problems, which
are discussed in Section 3.

3. Problems with complexity measures

3.1 Identification of problems

The rationale behind software complexity measures is
simple and easy to understand. The hypotheses are that a
complex piece of software is more likely to contain faults
and also that it is probably harder to maintain a complex
program than a simple one. Complexity measures are
introduced to measure directly measurable aspects of soft-
ware, hence working as indirect measures of the attributes
of actual interest, i.e. reliability and so forth. The basic
assumption is, of course, that a relationship between the
measurable aspects and the attributes of interest can be
identified. This is the difficult part. It is quite apparent that
it is easier to measure a specific complexity measure on,
for example, a computer program, than to relate this meas-
ure to the program´s actual reliability. This problem ought

to be possible to overcome, if it was not for all the other
problems with this type of measures. The problems are as
follows:
• Metrics definition

In many cases, there exists no common definition of a
complexity measure or the definitions are interpreted
differently by different people applying the measures.
The most well-known example is, of course, the prob-
lem of defining lines of code. At first, it seems simple
enough, but when starting to discuss the issue the prob-
lem becomes apparent. This means that it is not possi-
ble to interpret and understand experiences from others
when applying complexity measures, hence being an
immense problem as it implies that everybody has to
build their own experience base, without being able to
learn anything from others.

• Aspects of complexity
Most complexity measures focus on one aspect of the
software, i.e. the measures can often be related to one
or perhaps two of the following classes: size, control,
data or communication. It is, for example, easily real-
ized that lines of code is a size measure and it does not
reveal any information about the structure of the pro-
gram or about the complexity of the data handling.
Therefore, complexity measures are too restricted in
their judgement of actual complexity and consequently
they are not good indicators of the software quality
attributes. Moreover, they should not really be referred
to as being complexity measures as they do not meas-
ure complexity. The proposed complexity measures
usually represent one or perhaps two aspects of com-
plexity, but complexity consists of too many aspects to,
with our current level of understanding, represent it
with a single figure.

• Applied late in the life cycle
Another common problem of complexity measures, is
that they are often not applicable until late in the soft-
ware life cycle. Most measures cannot be used until the
coding phase, which seems ridiculously late if being
able to use the measures to improve the software.
Although, it is better to at least get some indications
during coding, than being surprised in testing. So in
some sense, coding is early, but in another sense it is
late, since we are not able to do much about it in the on-
going project. The prediction of software quality
attributes is often not available until the software is
going to be shipped to the customer, which is clearly
too late. It is no use standing there with the hat in our
hand saying: yes, we know the software is unreliable
we measured it the same day we delivered the software.
Some measures that try to address this problem have
been proposed, for example, function points [15].

• Static measures vs. dynamic behaviour
Furthermore, even if succeeding in using complexity
measures to estimate static aspects during development,
there has been little work done to relate these estimates
to the dynamic behaviour encountered when executing
the software. An example is that complexity measures
may be related to fault content, but then the problem of
mapping fault content to failures and hence to reliabil-
ity remains. Some work has been done to overcome
these problems, but the problem is not solved.

• On-line measurement
Complexity measurements in an on-going project is
difficult, even though it is preferable to the situation
described in the next item. The major problem with on-
line measurement is that as soon as people become
aware of what you are measuring, then they are able to
influence it. This is a similar phenomena as Heisen-
berg’s principle in physics, i.e. you influence your
measurement object and hence it is doubtful if any con-
clusions can be drawn from the study.
A simple example of Heisenberg’s principle in software
can be formulated as follows: Assume that you have
decided to measure the number of unique operands, cf.
Halstead´s software science, as soon as this becomes
well-known in the project, it is likely that the program-
mers try to keep the number of operands down to a
minimum. This means that they reuse operands for dif-
ferent purposes, hence making the program really com-
plicated and, of course, error-prone. Reuse may be
argued as an important issue to raise software produc-
tivity, but hardly if it comes to reuse of operands.

• Unexpected correlation
The collection of a large number of metrics increases
the risk that a correlation is found by coincidence, i.e.
two parameters may be correlated by chance. This
means that there is a risk, that it is believed that a cer-
tain relationship exists although it does not in reality.
This means that erroneous conclusions may be drawn.

• Retrospect analysis
Last, but not least, one problem is retrospect analysis.
In many cases the analysis presented in the literature is
based on investigations being done in retrospect, which
means that the complexity measure is based on soft-
ware which has been changed due the faults found, and
then it is clearly wrong to try to correlate the complex-
ity measure with the faults found, see Figure 1.
Assume, for example, that the original software refers
to the software prior to system testing, then systematic
testing is performed and several faults are identified.
These faults are corrected and the software can be
released.

FIGURE 1. The retrospect problem.

The persons performing complexity measurements
comes in and measure the complexity of the delivered
software and then try to correlate the measures with the
number of faults found during system testing. This
results in, at least, one big mistake, i.e. the measures are
based on software which has been changed due to the
faults. It may be the case that a simple module prior to
system testing is quite complicated after system testing
due to that a large number of faults were found in it, but
on the other hand it is correct now. In this particular
case, the complexity comes from correcting the faults
and hopefully obtaining a better module after the cor-
rections, even if it seems as it may be problematic due
to high complexity and a large number of faults. Many
scenarios of this type can be formulated, hence retro-
spect analysis is bound to yield incorrect results and it
must be abandoned.
To these problems of complexity measures themselves,

we may add the poor predictive ability and accuracy. All
in all, when adding up the problems it is no surprise that
very few companies use complexity measures. New meth-
ods must evolve, as, for example, recent ideas of applying
capture-recapture techniques to software inspections. The
difficulty with complexity measures means that we might
as well go back to a very basic definition, instead of
inventing new complexity measures which have all the
above disadvantages.

The possible problems listed above should be recog-
nized, although some of the issues listed may be more or
less relevant or important in different cases. For example,
it may be positive if software developers strive to mini-
mize certain metrics given that it actually means that it
improves one or several software product quality
attributes.

3.2 Problems of our study

Unfortunately, the study described in Section 2 suffers
from most of the problems of software complexity meas-
ures presented in Section 3.1. The points in the previous
section are here treated one by one and compared with the
study described above.

Original
software

Time axis

Measured
software

Several faults

• Metrics definition
In the study, a common definition existed since all the
measures were defined and collected by one person, but
the definitions were not formal hence making it diffi-
cult for anybody else to use the definitions with the
same interpretation.

• Aspects of complexity
All the measures in the study only measured one aspect
at the time, hence no measure was able to estimate
“true complexity”.

• Applied late in the life cycle
Most of the measures were collected from the code,
which clearly most be considered as being too late.
Some measures were, however, collected from the
design descriptions which improves the situation.
Unfortunately, there are no measures from the require-
ments specification or other specifications.

• Static measures vs. dynamic behaviour
The measures are correlated to failure reports from the
field, but as they are not related to the usage of the soft-
ware and the time between failures, it is not possible to
estimate the reliability. The failure reports reflect prob-
lems, but only as a part of the total fault content.

• On-line measurement
The study was not performed on-line and hence the
problem with on-line measurement is irrelevant for the
study.

• Unexpected correlation
The study did not reveal any unexpected correlation.
The problem of the study is primarily the lack of corre-
lation.

• Retrospect analysis
This problem is critical in the study reported. The anal-
ysis was made without being in control of the actual
connection between the descriptions from which the
measures were collected, and the descriptions from
which the failures were reported. Thus, the study is
dubious as it is not possible to determine if we actually
are correlating measures which have a relation or not.
In summary, we can conclude that study suffers from

four of the problems and partly from one of them and
finally two of the problems are irrelevant. This makes it
quite clear that the result from the study are not reliable
and hence not particular useful, when trying to turn soft-
ware creation into software engineering. This is clearly
supported by the low correlation figures and relatively
high mean errors reported above. Although the objective is
to improve software measurement with this type of stud-
ies, it is more probably that they harm the field of software
measurement more than they improve the field.

4. Software weight

In order, to emphasize the lack of scientific foundation
in many measures proposed for software, a metrics of our
own is proposed. The metric is supposed to be ironic and
the objective is to stimulate discussion and hopefully an
increased awareness about software metrics and in particu-
lar concerning the need for a rigorous approach, which
also is stressed elsewhere see for example [12].

This section introduces a simple and understandable
complexity measure, and the objectives with the introduc-
tion of a new measure are: to provide a basis for discus-
sion and to indicate the level of finesse in many of the
existing complexity measures. The measure to introduce
is: Software Weight! Would it not be wonderful to ask
questions like: How much does your program weigh?

Software weight is a relevant complexity measure. The
measure can be applied on the requirement specification
by just putting the requirements document on the balance.
The actual code can also be weighed, either by putting the
code listings on the balance or even better to go back to
the good old days when the code was on punch cards. The
latter can be used in the following way:
1. Weigh the cards prior to punching the cards,
2. Punch the program into the cards,
3. Weigh the cards after the program has been put on the

cards,
4. The software weight is now equal to the difference

between the weight before and after the punching.
This procedure can be summarized in the following for-

mula:

where, SW is the software weight and PCW1 and PCW2
are the weight of the punch cards before and after having
put the program on to the cards respectively. This measure
ought to capture code complexity, at least as good as most
existing measures, as the number of holes in the cards mir-
rors the implemented code.

Therefore, it is proposed to start using this basic com-
plexity measure for software. The measure may even be
described in a standardized unit, i.e. grams. The unit is
also understandable to people outside the computer soci-
ety. This measure would have helped in the following
anecdote, which probably is not true, but all the same quite
charming:

“Back in the 70´s, when one of the Apollos where
being sent out into space, there was one person being
responsible for the weight of the rocket. His responsibility
was to make sure that the weight of the rocket was below a
given value, which would enable the rocket to take off. He
knew that software was going to be loaded on the comput-

SW PCW1 PCW2–=

ers, and hence he went to the computer department to
inquire about the weight of the software. He asked about
the weight of the software, but was told that it did not
weigh anything. This answer was not accepted, and he told
the computer department that either they found out the
weight or the software did not go aboard. He went away,
but promised to come back the next day and then he
expected a more accurate answer. When he came back, the
showed him the punch cards and he said, with some satis-
faction, I was right these clearly weigh something. The
computer expert then told him; we do not send the cards,
we send the holes!”.

This minor anecdote clearly shows that the notion of
software weight is needed. Therefore, it is proposed that
software weight ought to be used as a measure of com-
plexity of software, as it is at least as relevant as most
existing complexity measures of today!

The challenge for the future, as unfortunately seen by
too many software metrics researchers, is then to start
using this measure and try to correlate it to the important
software quality attributes, as for example reliability and
maintainability. These are commonly reported as being
more or less correlated with all these obscure existing
complexity measures of software, and hence ought to be
correlated with the software weight as well.

This is certainly not the appropriate road ahead in soft-
ware measurements. Other ways must be sought, which is
further discussed below.

5. Discussion

Software measurement must be taken seriously as it is
the basis to turn software development into an engineering
practice. Therefore, the approach to complexity measure-
ment of software must be improved. It is not enough to try
to correlate any measure with anything of interest, usually
external software attributes as for example reliability.
Software measurement must be based on a well-founded
hypothesis and then the measurements conducted must be
carried out in an orderly manner. Too many investigations
of software complexity are bound to fail as they suffer
from many of the problems presented in Section 3. Meas-
urement must be based on scientific principles and they
must be goal-oriented [15]. In other words, we must have
goals and determine what to measure based on these goals,
rather than start measuring and then see if the data col-
lected is useful.

Furthermore, if measurement is the basis for turning
software development into an engineering discipline, then
the maturity of software measurement must grow beyond
the search for a silver bullet in the form of the ultimate
software complexity measure or correlation studies. It is
the responsibility of the software measurement community

to lead the way by abandoning this search and turn soft-
ware measurement into a rigorous engineering discipline
on which software engineering can be based. We cannot
expect industry to embrace the concept of software meas-
urement as long as most papers being published focus on
finding the silver bullet for prediction, when other articles
are arguing that we cannot expect a silver bullet to solve
the software crisis, [17].

More specifically, complexity measures do have sev-
eral problems as pointed out in this paper. The measures
have been around for 20 years and the problems are still
the same. To overcome the prevailing problems of measur-
ing complexity to predict external product attributes as for
example software reliability, two things are needed:
• New methods and techniques to estimate and predict

software quality attributes throughout the software life
cycle. Some research is in progress to come up with
other techniques than relying on unreliable complexity
measures, for example capture-recapture techniques as
discussed in [18, 19].

• A vector of complexity measures is needed, that is
measures which captures different aspects of software
complexity must be used. The vector can then be used
to capture extreme behaviour of some modules and
hopefully this can lead to the identification of outliers.
The first item has been outside the scope of this paper,

but the second item has been emphasized by showing the
inability of different complexity measures to predict the
number of faults in different modules.

Software weight is probably not a good complexity
measure, but it shows clearly the level of finesse that many
of the existing, so called, complexity measures is on. The
simple measure proposed has its benefits though; the
measure can be applied throughout the software life cycle
and in particular the real logical weight of a piece of soft-
ware can be determined by using the software weight as
defined in this paper. The latter implying that we would
get a measure which is understandable outside the soft-
ware community. Unfortunately, the software weight is
probably as good predictor of software quality attributes as
most existing measures.

The objective here is, however, not to argue for this
measure, on the contrary, the objective here is to promote
discussion and emphasize that measurement of software
complexity must be treated differently. It is not possible to
find one general measurement describing software com-
plexity.

To summarize, software measurement is an important
activity, but it must be carried out rigorously. The status of
complexity measures and prediction from them cannot be
considered to fulfil this criterion. Thus, software measure-
ment of today will not form the necessary platform for
turning software development into an engineering disci-
pline.

Acknowledgement

I would like to express my sincere thanks to Prof. Min
Xie, National University of Singapore for presenting this
paper for me at the Asian-Pacific Software Engineering
Conference in Seoul, South Korea in December 1996.

References

[1] T.J. McCabe, “A Complexity Measure”, IEEE Transac-
tions on Software Engineering, Vol. 4, No. 2, pp. 308-320,
1976.

[2] M. H. Halstead, “Elements of Software Science”, Elsevier
North-Holland, 1975.

[3] J. Munson and T. Khoshgoftaar, “The Detection of Fault-
Prone Programs”, IEEE Transactions on Software Engi-
neering, Vol. 18, No. 5, 1992.

[4] N. Ohlsson, M. Helander and C. Wohlin, “Quality
Improvement by Identification of Fault-Prone Modules
Using Software Design Metrics”, Proceedings 6th Interna-
tional Conference on Software Quality, Ottawa, Canada,
October 1996.

[5] V. Basili, G. Caldiera and H. D. Rombach, “Experience
Factory” in Encyclopedia of Software Engineering, Vol. 1,
editor: J. J. Marciniak, John Wiley and Sons, pp. 469-476,
1994.

[6] Y. R. Pant, J. M. Verner and B. Henderson-Sellers “S/C: A
Software Size/Complexity Measure” in Software Quality
& Productivity: Theory, Practice, Education and Training,
editors: M. Lee, B-Z. Barta and P. Juliff, Chapman & Hall,
pp. 320-327, 1995.

[7] P. S. Grover and N. S. Gill, “Composite Complexity
Measures’ in Software Quality & Productivity: Theory,
Practice, Education and Training, editors: M. Lee, B-Z.
Barta and P. Juliff, Chapman & Hall, pp. 279-283, 1995.

[8] C. Wohlin, “A Study of Software Complexity”, Master
thesis, Dept. of Communication Systems, Lund Univer-
sity, Lund, Sweden, 1983 (in Swedish).

[9] ITU, “Recommendation Z.100: SDL - Specification and
Description Language”, 1988.

[10] E. Berlinger, “An Information Theory Based Complexity
Measure”, Proceedings National Computer Conference,
pp. 773-779, 1980.

[11] T. Khoshgoftaar and D. L. Lanning, “A Neural Network
Modeling Methodology for the Detection of High-Risk
Programs”, Proceedings 4th IEEE International Sympo-
sium on Software Reliability Engineering, Denver, Colo-
rado, USA, November 1993.

[12] J. Munson and R. H. Rawenel, “Designing Reliable Soft-
ware’, Proceedings 4th IEEE International Symposium on
Software Reliability Engineering, Denver, Colorado,
USA, November 1993.

[13] N. Fenton, “Software Metrics: A Rigorous Approach”,
Chapman & Hall, 1991.

[14] D. Kafura and J. Canning, “A Validation of Software Met-
rics Using Many Metrics and Two Resources”, Proceed-
ings 8th IEEE International Conference on Software
Engineering, London, UK, August 1985.

[15] A. J. Albrecht and J. E. Gaffney, “Software Function,
Source Lines of Code and Development Effort Prediction:
A Software Science Validation”, IEEE Transactions on
Software Engineering, Vol. 9. No. 6, pp. 639-648, 1983.

[16] Basili, V., Caldiera, G. and Rombach, H.D., “The Goal
Question Metric Approach”, in Encyclopedia of Software
Engineering, Vol. 1, editor: J. J. Marciniak, pp. 528-532,
John Wiley and Sons, New York, 1994.

[17] F. J. Brooks, “No Silver Bullet: Essence and Accidents in
Software Engineering”, IEEE Computer, pp. 10-19, April
1987.

[18] S. G. Eick, C. R. Loader, M. D. Long, L. G. Votta and S.
Vander-Wiel, “Estimating Software Fault Content before
Coding’, Proceedings 14th IEEE International Conference
on Software Engineering, Melbourne, Australia, 1992.

[19] C. Wohlin, P. Runeson and J. Brantestam, “An Experimen-
tal Evaluation of Capture-Recapture in Software Inspec-
tions”, Software Testing, Verification and Reliability, Vol.
5, No. 4, pp. 213-232, 1995.

